L(s) = 1 | + (0.924 + 0.533i)2-s + (0.5 − 0.866i)3-s + (−0.430 − 0.745i)4-s − 0.994i·5-s + (0.924 − 0.533i)6-s + (0.866 − 0.5i)7-s − 3.05i·8-s + (−0.499 − 0.866i)9-s + (0.530 − 0.919i)10-s + (−0.215 − 0.124i)11-s − 0.860·12-s + (−3.56 + 0.529i)13-s + 1.06·14-s + (−0.860 − 0.497i)15-s + (0.769 − 1.33i)16-s + (3.10 + 5.37i)17-s + ⋯ |
L(s) = 1 | + (0.653 + 0.377i)2-s + (0.288 − 0.499i)3-s + (−0.215 − 0.372i)4-s − 0.444i·5-s + (0.377 − 0.217i)6-s + (0.327 − 0.188i)7-s − 1.07i·8-s + (−0.166 − 0.288i)9-s + (0.167 − 0.290i)10-s + (−0.0650 − 0.0375i)11-s − 0.248·12-s + (−0.989 + 0.146i)13-s + 0.285·14-s + (−0.222 − 0.128i)15-s + (0.192 − 0.333i)16-s + (0.752 + 1.30i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.631 + 0.775i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.631 + 0.775i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.61031 - 0.764887i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.61031 - 0.764887i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.866 + 0.5i)T \) |
| 13 | \( 1 + (3.56 - 0.529i)T \) |
good | 2 | \( 1 + (-0.924 - 0.533i)T + (1 + 1.73i)T^{2} \) |
| 5 | \( 1 + 0.994iT - 5T^{2} \) |
| 11 | \( 1 + (0.215 + 0.124i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.10 - 5.37i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-7.28 + 4.20i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.907 - 1.57i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.34 - 2.32i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 8.53iT - 31T^{2} \) |
| 37 | \( 1 + (3.66 + 2.11i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-5.57 - 3.21i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (5.71 + 9.89i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 10.6iT - 47T^{2} \) |
| 53 | \( 1 + 0.601T + 53T^{2} \) |
| 59 | \( 1 + (7.71 - 4.45i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.87 + 4.97i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.73 - 3.31i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-10.4 + 6.00i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 9.70iT - 73T^{2} \) |
| 79 | \( 1 + 5.63T + 79T^{2} \) |
| 83 | \( 1 - 16.5iT - 83T^{2} \) |
| 89 | \( 1 + (8.47 + 4.89i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-2.10 + 1.21i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.24456115666942736931115992896, −10.83688133239995747507969965189, −9.761033520791199629884848530722, −8.893611133017276410792124011485, −7.65194647095589810806352531479, −6.81889175336447890753830842084, −5.51333941367982064165923186739, −4.78344183299259218750180192738, −3.33944192466494705197134553226, −1.30027106143439142890700495617,
2.55837453557275015142563718932, 3.45507190714334913256543121503, 4.76156505754206309446520176625, 5.53575342336017049397703089183, 7.37860916359488873979378671446, 8.057711228987438188039566238852, 9.387076582688803430612710291332, 10.09636955394070426595318397427, 11.44525688243233719588643798882, 11.90415115896720172561142641539