L(s) = 1 | + (0.924 + 0.533i)2-s + (0.5 − 0.866i)3-s + (−0.430 − 0.745i)4-s − 0.994i·5-s + (0.924 − 0.533i)6-s + (0.866 − 0.5i)7-s − 3.05i·8-s + (−0.499 − 0.866i)9-s + (0.530 − 0.919i)10-s + (−0.215 − 0.124i)11-s − 0.860·12-s + (−3.56 + 0.529i)13-s + 1.06·14-s + (−0.860 − 0.497i)15-s + (0.769 − 1.33i)16-s + (3.10 + 5.37i)17-s + ⋯ |
L(s) = 1 | + (0.653 + 0.377i)2-s + (0.288 − 0.499i)3-s + (−0.215 − 0.372i)4-s − 0.444i·5-s + (0.377 − 0.217i)6-s + (0.327 − 0.188i)7-s − 1.07i·8-s + (−0.166 − 0.288i)9-s + (0.167 − 0.290i)10-s + (−0.0650 − 0.0375i)11-s − 0.248·12-s + (−0.989 + 0.146i)13-s + 0.285·14-s + (−0.222 − 0.128i)15-s + (0.192 − 0.333i)16-s + (0.752 + 1.30i)17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(0.631+0.775i)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)(0.631+0.775i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.631+0.775i
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(43,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), 0.631+0.775i)
|
Particular Values
L(1) |
≈ |
1.61031−0.764887i |
L(21) |
≈ |
1.61031−0.764887i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 7 | 1+(−0.866+0.5i)T |
| 13 | 1+(3.56−0.529i)T |
good | 2 | 1+(−0.924−0.533i)T+(1+1.73i)T2 |
| 5 | 1+0.994iT−5T2 |
| 11 | 1+(0.215+0.124i)T+(5.5+9.52i)T2 |
| 17 | 1+(−3.10−5.37i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−7.28+4.20i)T+(9.5−16.4i)T2 |
| 23 | 1+(0.907−1.57i)T+(−11.5−19.9i)T2 |
| 29 | 1+(1.34−2.32i)T+(−14.5−25.1i)T2 |
| 31 | 1−8.53iT−31T2 |
| 37 | 1+(3.66+2.11i)T+(18.5+32.0i)T2 |
| 41 | 1+(−5.57−3.21i)T+(20.5+35.5i)T2 |
| 43 | 1+(5.71+9.89i)T+(−21.5+37.2i)T2 |
| 47 | 1−10.6iT−47T2 |
| 53 | 1+0.601T+53T2 |
| 59 | 1+(7.71−4.45i)T+(29.5−51.0i)T2 |
| 61 | 1+(2.87+4.97i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5.73−3.31i)T+(33.5+58.0i)T2 |
| 71 | 1+(−10.4+6.00i)T+(35.5−61.4i)T2 |
| 73 | 1+9.70iT−73T2 |
| 79 | 1+5.63T+79T2 |
| 83 | 1−16.5iT−83T2 |
| 89 | 1+(8.47+4.89i)T+(44.5+77.0i)T2 |
| 97 | 1+(−2.10+1.21i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.24456115666942736931115992896, −10.83688133239995747507969965189, −9.761033520791199629884848530722, −8.893611133017276410792124011485, −7.65194647095589810806352531479, −6.81889175336447890753830842084, −5.51333941367982064165923186739, −4.78344183299259218750180192738, −3.33944192466494705197134553226, −1.30027106143439142890700495617,
2.55837453557275015142563718932, 3.45507190714334913256543121503, 4.76156505754206309446520176625, 5.53575342336017049397703089183, 7.37860916359488873979378671446, 8.057711228987438188039566238852, 9.387076582688803430612710291332, 10.09636955394070426595318397427, 11.44525688243233719588643798882, 11.90415115896720172561142641539