L(s) = 1 | + (−1.22 + 1.22i)2-s + (0.866 + 0.5i)3-s − 1.02i·4-s + (−1.95 + 0.524i)5-s + (−1.67 + 0.449i)6-s + (−1.82 − 1.92i)7-s + (−1.20 − 1.20i)8-s + (0.499 + 0.866i)9-s + (1.76 − 3.05i)10-s + (−3.50 + 0.938i)11-s + (0.511 − 0.885i)12-s + (−1.78 − 3.13i)13-s + (4.59 + 0.123i)14-s + (−1.95 − 0.524i)15-s + 4.99·16-s − 1.50·17-s + ⋯ |
L(s) = 1 | + (−0.869 + 0.869i)2-s + (0.499 + 0.288i)3-s − 0.511i·4-s + (−0.875 + 0.234i)5-s + (−0.685 + 0.183i)6-s + (−0.687 − 0.725i)7-s + (−0.424 − 0.424i)8-s + (0.166 + 0.288i)9-s + (0.556 − 0.964i)10-s + (−1.05 + 0.282i)11-s + (0.147 − 0.255i)12-s + (−0.496 − 0.868i)13-s + (1.22 + 0.0328i)14-s + (−0.505 − 0.135i)15-s + 1.24·16-s − 0.365·17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(−0.431+0.902i)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)(−0.431+0.902i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
−0.431+0.902i
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), −0.431+0.902i)
|
Particular Values
L(1) |
≈ |
0.0346451−0.0549476i |
L(21) |
≈ |
0.0346451−0.0549476i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866−0.5i)T |
| 7 | 1+(1.82+1.92i)T |
| 13 | 1+(1.78+3.13i)T |
good | 2 | 1+(1.22−1.22i)T−2iT2 |
| 5 | 1+(1.95−0.524i)T+(4.33−2.5i)T2 |
| 11 | 1+(3.50−0.938i)T+(9.52−5.5i)T2 |
| 17 | 1+1.50T+17T2 |
| 19 | 1+(1.07−3.99i)T+(−16.4−9.5i)T2 |
| 23 | 1−3.71iT−23T2 |
| 29 | 1+(1.84+3.19i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.89+7.05i)T+(−26.8−15.5i)T2 |
| 37 | 1+(−1.85−1.85i)T+37iT2 |
| 41 | 1+(1.33−4.97i)T+(−35.5−20.5i)T2 |
| 43 | 1+(4.51+2.60i)T+(21.5+37.2i)T2 |
| 47 | 1+(−0.0684−0.255i)T+(−40.7+23.5i)T2 |
| 53 | 1+(2.63+4.57i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−0.912+0.912i)T−59iT2 |
| 61 | 1+(9.19−5.30i)T+(30.5−52.8i)T2 |
| 67 | 1+(−3.47−12.9i)T+(−58.0+33.5i)T2 |
| 71 | 1+(−3.11−11.6i)T+(−61.4+35.5i)T2 |
| 73 | 1+(2.77+0.744i)T+(63.2+36.5i)T2 |
| 79 | 1+(8.09−14.0i)T+(−39.5−68.4i)T2 |
| 83 | 1+(10.3+10.3i)T+83iT2 |
| 89 | 1+(−7.11+7.11i)T−89iT2 |
| 97 | 1+(0.645−0.173i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.72060189273642917528031489812, −11.42357186713349067018486012849, −10.07758139820559528446760142984, −9.831019474630209336244212171096, −8.362141500077479040221590080521, −7.73495735351038669540644770390, −7.17681221828975507117732216807, −5.80819970956113551345348299188, −4.11438598964697923485524792060, −3.04585961357718623292603609099,
0.05770882027911960509757836864, 2.21913034365176255783469268904, 3.20777279438795672050287961178, 4.89707505875763272288233564025, 6.46420593421485022281886651354, 7.72553940429404996031580806661, 8.706610520458006179078041319459, 9.179362295874296594759800535252, 10.30589403627070328396230704067, 11.20682414600050673309404858930