L(s) = 1 | + (−1.22 + 1.22i)2-s + (0.866 + 0.5i)3-s − 1.02i·4-s + (−1.95 + 0.524i)5-s + (−1.67 + 0.449i)6-s + (−1.82 − 1.92i)7-s + (−1.20 − 1.20i)8-s + (0.499 + 0.866i)9-s + (1.76 − 3.05i)10-s + (−3.50 + 0.938i)11-s + (0.511 − 0.885i)12-s + (−1.78 − 3.13i)13-s + (4.59 + 0.123i)14-s + (−1.95 − 0.524i)15-s + 4.99·16-s − 1.50·17-s + ⋯ |
L(s) = 1 | + (−0.869 + 0.869i)2-s + (0.499 + 0.288i)3-s − 0.511i·4-s + (−0.875 + 0.234i)5-s + (−0.685 + 0.183i)6-s + (−0.687 − 0.725i)7-s + (−0.424 − 0.424i)8-s + (0.166 + 0.288i)9-s + (0.556 − 0.964i)10-s + (−1.05 + 0.282i)11-s + (0.147 − 0.255i)12-s + (−0.496 − 0.868i)13-s + (1.22 + 0.0328i)14-s + (−0.505 − 0.135i)15-s + 1.24·16-s − 0.365·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.431 + 0.902i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.431 + 0.902i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0346451 - 0.0549476i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0346451 - 0.0549476i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (1.82 + 1.92i)T \) |
| 13 | \( 1 + (1.78 + 3.13i)T \) |
good | 2 | \( 1 + (1.22 - 1.22i)T - 2iT^{2} \) |
| 5 | \( 1 + (1.95 - 0.524i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (3.50 - 0.938i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + 1.50T + 17T^{2} \) |
| 19 | \( 1 + (1.07 - 3.99i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 3.71iT - 23T^{2} \) |
| 29 | \( 1 + (1.84 + 3.19i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.89 + 7.05i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (-1.85 - 1.85i)T + 37iT^{2} \) |
| 41 | \( 1 + (1.33 - 4.97i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (4.51 + 2.60i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.0684 - 0.255i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (2.63 + 4.57i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.912 + 0.912i)T - 59iT^{2} \) |
| 61 | \( 1 + (9.19 - 5.30i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.47 - 12.9i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (-3.11 - 11.6i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (2.77 + 0.744i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (8.09 - 14.0i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (10.3 + 10.3i)T + 83iT^{2} \) |
| 89 | \( 1 + (-7.11 + 7.11i)T - 89iT^{2} \) |
| 97 | \( 1 + (0.645 - 0.173i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.72060189273642917528031489812, −11.42357186713349067018486012849, −10.07758139820559528446760142984, −9.831019474630209336244212171096, −8.362141500077479040221590080521, −7.73495735351038669540644770390, −7.17681221828975507117732216807, −5.80819970956113551345348299188, −4.11438598964697923485524792060, −3.04585961357718623292603609099,
0.05770882027911960509757836864, 2.21913034365176255783469268904, 3.20777279438795672050287961178, 4.89707505875763272288233564025, 6.46420593421485022281886651354, 7.72553940429404996031580806661, 8.706610520458006179078041319459, 9.179362295874296594759800535252, 10.30589403627070328396230704067, 11.20682414600050673309404858930