L(s) = 1 | + (0.837 − 0.837i)2-s + (0.866 + 0.5i)3-s + 0.598i·4-s + (−1.58 + 0.424i)5-s + (1.14 − 0.306i)6-s + (2.46 + 0.955i)7-s + (2.17 + 2.17i)8-s + (0.499 + 0.866i)9-s + (−0.970 + 1.68i)10-s + (−2.81 + 0.754i)11-s + (−0.299 + 0.518i)12-s + (2.68 − 2.40i)13-s + (2.86 − 1.26i)14-s + (−1.58 − 0.424i)15-s + 2.44·16-s − 0.811·17-s + ⋯ |
L(s) = 1 | + (0.591 − 0.591i)2-s + (0.499 + 0.288i)3-s + 0.299i·4-s + (−0.708 + 0.189i)5-s + (0.466 − 0.125i)6-s + (0.932 + 0.361i)7-s + (0.769 + 0.769i)8-s + (0.166 + 0.288i)9-s + (−0.306 + 0.531i)10-s + (−0.849 + 0.227i)11-s + (−0.0863 + 0.149i)12-s + (0.743 − 0.668i)13-s + (0.765 − 0.338i)14-s + (−0.408 − 0.109i)15-s + 0.611·16-s − 0.196·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.208i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.978 - 0.208i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.92186 + 0.202317i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.92186 + 0.202317i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 - 0.5i)T \) |
| 7 | \( 1 + (-2.46 - 0.955i)T \) |
| 13 | \( 1 + (-2.68 + 2.40i)T \) |
good | 2 | \( 1 + (-0.837 + 0.837i)T - 2iT^{2} \) |
| 5 | \( 1 + (1.58 - 0.424i)T + (4.33 - 2.5i)T^{2} \) |
| 11 | \( 1 + (2.81 - 0.754i)T + (9.52 - 5.5i)T^{2} \) |
| 17 | \( 1 + 0.811T + 17T^{2} \) |
| 19 | \( 1 + (-1.66 + 6.23i)T + (-16.4 - 9.5i)T^{2} \) |
| 23 | \( 1 - 1.83iT - 23T^{2} \) |
| 29 | \( 1 + (2.42 + 4.20i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.01 + 3.78i)T + (-26.8 - 15.5i)T^{2} \) |
| 37 | \( 1 + (2.89 + 2.89i)T + 37iT^{2} \) |
| 41 | \( 1 + (0.392 - 1.46i)T + (-35.5 - 20.5i)T^{2} \) |
| 43 | \( 1 + (2.14 + 1.23i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (0.325 + 1.21i)T + (-40.7 + 23.5i)T^{2} \) |
| 53 | \( 1 + (1.12 + 1.95i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-4.73 + 4.73i)T - 59iT^{2} \) |
| 61 | \( 1 + (0.446 - 0.258i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-3.33 - 12.4i)T + (-58.0 + 33.5i)T^{2} \) |
| 71 | \( 1 + (2.21 + 8.27i)T + (-61.4 + 35.5i)T^{2} \) |
| 73 | \( 1 + (9.87 + 2.64i)T + (63.2 + 36.5i)T^{2} \) |
| 79 | \( 1 + (2.17 - 3.76i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (7.44 + 7.44i)T + 83iT^{2} \) |
| 89 | \( 1 + (-5.98 + 5.98i)T - 89iT^{2} \) |
| 97 | \( 1 + (-16.5 + 4.44i)T + (84.0 - 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.67475148016413986501165965305, −11.32493288771572672397653529976, −10.37024780597729455274670624304, −8.905417599147295359042850617932, −8.001931692707759400370512427724, −7.44171530640393925711762604893, −5.41573101962113262548151309280, −4.46219550974320414255062518146, −3.38822832574335303092881571566, −2.27632405952145236686034220141,
1.53543114038400928372591079062, 3.68409500200751893883369678805, 4.65714092809759655907156226057, 5.77634256928465985585927103353, 7.01144884925126966429004060936, 7.88283069951824788995644896503, 8.616055969694366587842423515718, 10.09225179599906426172012704211, 10.95514990594787092951083888320, 11.99493935935898494925750850337