L(s) = 1 | + (0.837 − 0.837i)2-s + (0.866 + 0.5i)3-s + 0.598i·4-s + (−1.58 + 0.424i)5-s + (1.14 − 0.306i)6-s + (2.46 + 0.955i)7-s + (2.17 + 2.17i)8-s + (0.499 + 0.866i)9-s + (−0.970 + 1.68i)10-s + (−2.81 + 0.754i)11-s + (−0.299 + 0.518i)12-s + (2.68 − 2.40i)13-s + (2.86 − 1.26i)14-s + (−1.58 − 0.424i)15-s + 2.44·16-s − 0.811·17-s + ⋯ |
L(s) = 1 | + (0.591 − 0.591i)2-s + (0.499 + 0.288i)3-s + 0.299i·4-s + (−0.708 + 0.189i)5-s + (0.466 − 0.125i)6-s + (0.932 + 0.361i)7-s + (0.769 + 0.769i)8-s + (0.166 + 0.288i)9-s + (−0.306 + 0.531i)10-s + (−0.849 + 0.227i)11-s + (−0.0863 + 0.149i)12-s + (0.743 − 0.668i)13-s + (0.765 − 0.338i)14-s + (−0.408 − 0.109i)15-s + 0.611·16-s − 0.196·17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(0.978−0.208i)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)(0.978−0.208i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.978−0.208i
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), 0.978−0.208i)
|
Particular Values
L(1) |
≈ |
1.92186+0.202317i |
L(21) |
≈ |
1.92186+0.202317i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.866−0.5i)T |
| 7 | 1+(−2.46−0.955i)T |
| 13 | 1+(−2.68+2.40i)T |
good | 2 | 1+(−0.837+0.837i)T−2iT2 |
| 5 | 1+(1.58−0.424i)T+(4.33−2.5i)T2 |
| 11 | 1+(2.81−0.754i)T+(9.52−5.5i)T2 |
| 17 | 1+0.811T+17T2 |
| 19 | 1+(−1.66+6.23i)T+(−16.4−9.5i)T2 |
| 23 | 1−1.83iT−23T2 |
| 29 | 1+(2.42+4.20i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−1.01+3.78i)T+(−26.8−15.5i)T2 |
| 37 | 1+(2.89+2.89i)T+37iT2 |
| 41 | 1+(0.392−1.46i)T+(−35.5−20.5i)T2 |
| 43 | 1+(2.14+1.23i)T+(21.5+37.2i)T2 |
| 47 | 1+(0.325+1.21i)T+(−40.7+23.5i)T2 |
| 53 | 1+(1.12+1.95i)T+(−26.5+45.8i)T2 |
| 59 | 1+(−4.73+4.73i)T−59iT2 |
| 61 | 1+(0.446−0.258i)T+(30.5−52.8i)T2 |
| 67 | 1+(−3.33−12.4i)T+(−58.0+33.5i)T2 |
| 71 | 1+(2.21+8.27i)T+(−61.4+35.5i)T2 |
| 73 | 1+(9.87+2.64i)T+(63.2+36.5i)T2 |
| 79 | 1+(2.17−3.76i)T+(−39.5−68.4i)T2 |
| 83 | 1+(7.44+7.44i)T+83iT2 |
| 89 | 1+(−5.98+5.98i)T−89iT2 |
| 97 | 1+(−16.5+4.44i)T+(84.0−48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.67475148016413986501165965305, −11.32493288771572672397653529976, −10.37024780597729455274670624304, −8.905417599147295359042850617932, −8.001931692707759400370512427724, −7.44171530640393925711762604893, −5.41573101962113262548151309280, −4.46219550974320414255062518146, −3.38822832574335303092881571566, −2.27632405952145236686034220141,
1.53543114038400928372591079062, 3.68409500200751893883369678805, 4.65714092809759655907156226057, 5.77634256928465985585927103353, 7.01144884925126966429004060936, 7.88283069951824788995644896503, 8.616055969694366587842423515718, 10.09225179599906426172012704211, 10.95514990594787092951083888320, 11.99493935935898494925750850337