L(s) = 1 | + (1.85 + 1.85i)2-s + (0.866 − 0.5i)3-s + 4.91i·4-s + (0.502 + 0.134i)5-s + (2.53 + 0.680i)6-s + (−1.89 − 1.84i)7-s + (−5.41 + 5.41i)8-s + (0.499 − 0.866i)9-s + (0.684 + 1.18i)10-s + (−1.93 − 0.517i)11-s + (2.45 + 4.25i)12-s + (2.40 + 2.68i)13-s + (−0.0921 − 6.95i)14-s + (0.502 − 0.134i)15-s − 10.3·16-s + 5.09·17-s + ⋯ |
L(s) = 1 | + (1.31 + 1.31i)2-s + (0.499 − 0.288i)3-s + 2.45i·4-s + (0.224 + 0.0602i)5-s + (1.03 + 0.277i)6-s + (−0.716 − 0.697i)7-s + (−1.91 + 1.91i)8-s + (0.166 − 0.288i)9-s + (0.216 + 0.374i)10-s + (−0.582 − 0.156i)11-s + (0.709 + 1.22i)12-s + (0.667 + 0.744i)13-s + (−0.0246 − 1.85i)14-s + (0.129 − 0.0347i)15-s − 2.57·16-s + 1.23·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.110 - 0.993i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.110 - 0.993i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.76119 + 1.96876i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.76119 + 1.96876i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (1.89 + 1.84i)T \) |
| 13 | \( 1 + (-2.40 - 2.68i)T \) |
good | 2 | \( 1 + (-1.85 - 1.85i)T + 2iT^{2} \) |
| 5 | \( 1 + (-0.502 - 0.134i)T + (4.33 + 2.5i)T^{2} \) |
| 11 | \( 1 + (1.93 + 0.517i)T + (9.52 + 5.5i)T^{2} \) |
| 17 | \( 1 - 5.09T + 17T^{2} \) |
| 19 | \( 1 + (1.86 + 6.96i)T + (-16.4 + 9.5i)T^{2} \) |
| 23 | \( 1 + 4.78iT - 23T^{2} \) |
| 29 | \( 1 + (1.35 - 2.34i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-0.867 - 3.23i)T + (-26.8 + 15.5i)T^{2} \) |
| 37 | \( 1 + (5.25 - 5.25i)T - 37iT^{2} \) |
| 41 | \( 1 + (-0.938 - 3.50i)T + (-35.5 + 20.5i)T^{2} \) |
| 43 | \( 1 + (3.62 - 2.09i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.0215 + 0.0803i)T + (-40.7 - 23.5i)T^{2} \) |
| 53 | \( 1 + (-6.85 + 11.8i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.91 + 3.91i)T + 59iT^{2} \) |
| 61 | \( 1 + (0.652 + 0.376i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.81 - 10.4i)T + (-58.0 - 33.5i)T^{2} \) |
| 71 | \( 1 + (1.33 - 5.00i)T + (-61.4 - 35.5i)T^{2} \) |
| 73 | \( 1 + (-2.05 + 0.551i)T + (63.2 - 36.5i)T^{2} \) |
| 79 | \( 1 + (-6.17 - 10.6i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-7.09 + 7.09i)T - 83iT^{2} \) |
| 89 | \( 1 + (9.64 + 9.64i)T + 89iT^{2} \) |
| 97 | \( 1 + (3.28 + 0.880i)T + (84.0 + 48.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.74485551592370900194132972208, −11.64141264876491979224224495487, −10.21086216823439901329881835299, −8.842943775132587375975980048361, −7.947526223021500531702630479489, −6.88673165287671898961379998529, −6.40085617293384239038192517744, −5.08793620619979569467294625834, −3.92443388983074872860193357384, −2.90080146957259594864366034840,
1.87847759347150946885284929564, 3.17328488885341760071016080032, 3.85747761596617113510230258920, 5.54239541314921387225821652987, 5.82991547246538118793507007726, 7.84497591658453515952439515624, 9.303050374738053039367055153789, 10.06592534349962668920262965189, 10.69882510536668582962052064434, 12.00642904156962593914008830341