L(s) = 1 | + (−0.939 + 1.62i)2-s + (0.5 + 0.866i)3-s + (−0.766 − 1.32i)4-s + (−1.43 + 2.49i)5-s − 1.87·6-s + (2.47 + 0.943i)7-s − 0.879·8-s + (−0.499 + 0.866i)9-s + (−2.70 − 4.68i)10-s + (0.326 + 0.565i)11-s + (0.766 − 1.32i)12-s + 13-s + (−3.85 + 3.13i)14-s − 2.87·15-s + (2.35 − 4.08i)16-s + (−2.26 − 3.92i)17-s + ⋯ |
L(s) = 1 | + (−0.664 + 1.15i)2-s + (0.288 + 0.499i)3-s + (−0.383 − 0.663i)4-s + (−0.643 + 1.11i)5-s − 0.767·6-s + (0.934 + 0.356i)7-s − 0.310·8-s + (−0.166 + 0.288i)9-s + (−0.855 − 1.48i)10-s + (0.0983 + 0.170i)11-s + (0.221 − 0.383i)12-s + 0.277·13-s + (−1.03 + 0.838i)14-s − 0.743·15-s + (0.589 − 1.02i)16-s + (−0.549 − 0.951i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.975 + 0.220i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.975 + 0.220i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0949531 - 0.850698i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0949531 - 0.850698i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 + (-2.47 - 0.943i)T \) |
| 13 | \( 1 - T \) |
good | 2 | \( 1 + (0.939 - 1.62i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (1.43 - 2.49i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.326 - 0.565i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (2.26 + 3.92i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.37 - 4.12i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (0.0714 - 0.123i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 5.26T + 29T^{2} \) |
| 31 | \( 1 + (2.59 + 4.49i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (0.266 - 0.460i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 - 5.63T + 41T^{2} \) |
| 43 | \( 1 + 2.83T + 43T^{2} \) |
| 47 | \( 1 + (0.305 - 0.528i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-0.673 - 1.16i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-7.56 - 13.1i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7.71 - 13.3i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.631 - 1.09i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 - 14.3T + 71T^{2} \) |
| 73 | \( 1 + (-5.53 - 9.58i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.65 + 13.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 3.65T + 83T^{2} \) |
| 89 | \( 1 + (-0.737 + 1.27i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 2.04T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.10676825405749496766622679386, −11.31060635366774960586881463810, −10.40787727311512830709049559179, −9.261312044145206351270219328380, −8.357330487603973626162675660299, −7.63640906052443234992544790590, −6.77675720093792783302817855309, −5.62092558154097685886872637320, −4.19465953983801381491283976564, −2.71962472121342457220243379205,
0.819986593895102864130326887990, 2.02929172386769140725004579519, 3.73439487558590327048987781051, 4.90238070902066351556779660012, 6.57353749757084942768590017156, 8.155581062260980435069647393648, 8.468284554875407702042510971129, 9.376688383173481569453604378498, 10.77427331499573775528692201467, 11.24963699523758831141668179103