L(s) = 1 | + (−0.328 − 0.568i)2-s + 3-s + (0.784 − 1.35i)4-s + (−0.0109 + 0.0190i)5-s + (−0.328 − 0.568i)6-s + (−1.07 − 2.41i)7-s − 2.34·8-s + 9-s + 0.0144·10-s + 3.39·11-s + (0.784 − 1.35i)12-s + (−2.82 − 2.23i)13-s + (−1.02 + 1.40i)14-s + (−0.0109 + 0.0190i)15-s + (−0.799 − 1.38i)16-s + (−1.66 + 2.88i)17-s + ⋯ |
L(s) = 1 | + (−0.232 − 0.402i)2-s + 0.577·3-s + (0.392 − 0.679i)4-s + (−0.00490 + 0.00850i)5-s + (−0.134 − 0.232i)6-s + (−0.405 − 0.914i)7-s − 0.828·8-s + 0.333·9-s + 0.00455·10-s + 1.02·11-s + (0.226 − 0.392i)12-s + (−0.783 − 0.621i)13-s + (−0.273 + 0.375i)14-s + (−0.00283 + 0.00490i)15-s + (−0.199 − 0.346i)16-s + (−0.403 + 0.699i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0657 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0657 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.02254 - 0.957420i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.02254 - 0.957420i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 + (1.07 + 2.41i)T \) |
| 13 | \( 1 + (2.82 + 2.23i)T \) |
good | 2 | \( 1 + (0.328 + 0.568i)T + (-1 + 1.73i)T^{2} \) |
| 5 | \( 1 + (0.0109 - 0.0190i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 - 3.39T + 11T^{2} \) |
| 17 | \( 1 + (1.66 - 2.88i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 - 3.33T + 19T^{2} \) |
| 23 | \( 1 + (-2.75 - 4.76i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-3.52 + 6.10i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (3.13 + 5.42i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.45 + 4.25i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.27 + 2.20i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4.49 - 7.77i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.08 - 7.06i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.68 - 9.84i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.09 - 10.5i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 - 10.4T + 61T^{2} \) |
| 67 | \( 1 - 10.7T + 67T^{2} \) |
| 71 | \( 1 + (3.57 + 6.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-0.102 - 0.176i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (3.42 - 5.92i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 14.4T + 83T^{2} \) |
| 89 | \( 1 + (-2.72 - 4.72i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-4.71 - 8.16i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.47606599915238676833464382377, −10.67651342632304877102018500234, −9.680591428215765463520514237602, −9.239746675924476485639691902680, −7.68974970307324474032657577760, −6.86280388634312577382102418743, −5.69011451117674470626262677225, −4.10354839030039153625011441211, −2.85486246108600686817853845076, −1.22123858530204146913406869796,
2.37496741727909642019694104350, 3.42602916006640846648842200365, 4.98261222402315473245330135667, 6.68179508920965538372809889532, 7.00535212688924944979770977537, 8.570556326763595010182101054460, 8.896539530667126391370219810303, 9.925683250675842544585535586665, 11.46564598861291910147470371365, 12.17147606608278945248047888917