L(s) = 1 | + (1.35 − 2.35i)2-s + 3-s + (−2.68 − 4.65i)4-s + (1.94 + 3.36i)5-s + (1.35 − 2.35i)6-s + (0.587 − 2.57i)7-s − 9.16·8-s + 9-s + 10.5·10-s − 1.63·11-s + (−2.68 − 4.65i)12-s + (−3.59 + 0.202i)13-s + (−5.26 − 4.88i)14-s + (1.94 + 3.36i)15-s + (−7.06 + 12.2i)16-s + (2.09 + 3.63i)17-s + ⋯ |
L(s) = 1 | + (0.960 − 1.66i)2-s + 0.577·3-s + (−1.34 − 2.32i)4-s + (0.869 + 1.50i)5-s + (0.554 − 0.960i)6-s + (0.221 − 0.975i)7-s − 3.23·8-s + 0.333·9-s + 3.33·10-s − 0.491·11-s + (−0.775 − 1.34i)12-s + (−0.998 + 0.0562i)13-s + (−1.40 − 1.30i)14-s + (0.501 + 0.869i)15-s + (−1.76 + 3.05i)16-s + (0.508 + 0.880i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.467 + 0.884i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.467 + 0.884i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.22179 - 2.02774i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.22179 - 2.02774i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 - T \) |
| 7 | \( 1 + (-0.587 + 2.57i)T \) |
| 13 | \( 1 + (3.59 - 0.202i)T \) |
good | 2 | \( 1 + (-1.35 + 2.35i)T + (-1 - 1.73i)T^{2} \) |
| 5 | \( 1 + (-1.94 - 3.36i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + 1.63T + 11T^{2} \) |
| 17 | \( 1 + (-2.09 - 3.63i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 - 1.69T + 19T^{2} \) |
| 23 | \( 1 + (0.395 - 0.685i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (0.242 + 0.419i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.915 - 1.58i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (0.344 - 0.596i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.96 - 5.14i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.79 + 4.83i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (0.292 + 0.506i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-3.04 + 5.28i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (4.13 + 7.16i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + 9.08T + 61T^{2} \) |
| 67 | \( 1 - 1.00T + 67T^{2} \) |
| 71 | \( 1 + (-7.93 + 13.7i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (2.92 - 5.06i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.643 - 1.11i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 6.18T + 83T^{2} \) |
| 89 | \( 1 + (-2.20 + 3.81i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.08 + 8.81i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.46512591867982449722739708829, −10.53293981840280292886633379628, −10.21554684014014106923290272684, −9.434069032865662389713587898909, −7.59934297719779133503924016895, −6.33805424833727083133541641290, −5.09053288476536895500970416380, −3.74745726056237636322126896234, −2.87080539323744406561502597833, −1.83587245275733258189936941279,
2.67413685104353343404128901411, 4.50901684783034205920764220299, 5.25323736161498325572429240065, 5.85843179189135299895945690132, 7.36724996373362935893197626507, 8.184077203168998604290513607797, 9.058912337905726375807854226652, 9.586692284425390851083826903413, 12.10059380085386625976592495862, 12.52305171949881466981957092117