L(s) = 1 | − 0.831·2-s + (0.5 − 0.866i)3-s − 1.30·4-s + (−1.30 + 2.26i)5-s + (−0.415 + 0.719i)6-s + (1.78 − 1.95i)7-s + 2.75·8-s + (−0.499 − 0.866i)9-s + (1.08 − 1.88i)10-s + (0.924 − 1.60i)11-s + (−0.654 + 1.13i)12-s + (2.74 − 2.33i)13-s + (−1.48 + 1.62i)14-s + (1.30 + 2.26i)15-s + 0.331·16-s + 6.83·17-s + ⋯ |
L(s) = 1 | − 0.587·2-s + (0.288 − 0.499i)3-s − 0.654·4-s + (−0.585 + 1.01i)5-s + (−0.169 + 0.293i)6-s + (0.673 − 0.738i)7-s + 0.972·8-s + (−0.166 − 0.288i)9-s + (0.343 − 0.595i)10-s + (0.278 − 0.482i)11-s + (−0.188 + 0.327i)12-s + (0.761 − 0.648i)13-s + (−0.396 + 0.434i)14-s + (0.337 + 0.585i)15-s + 0.0828·16-s + 1.65·17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(0.731+0.681i)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)(0.731+0.681i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.731+0.681i
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), 0.731+0.681i)
|
Particular Values
L(1) |
≈ |
0.828697−0.325998i |
L(21) |
≈ |
0.828697−0.325998i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 7 | 1+(−1.78+1.95i)T |
| 13 | 1+(−2.74+2.33i)T |
good | 2 | 1+0.831T+2T2 |
| 5 | 1+(1.30−2.26i)T+(−2.5−4.33i)T2 |
| 11 | 1+(−0.924+1.60i)T+(−5.5−9.52i)T2 |
| 17 | 1−6.83T+17T2 |
| 19 | 1+(2.53+4.39i)T+(−9.5+16.4i)T2 |
| 23 | 1+1.27T+23T2 |
| 29 | 1+(−0.724−1.25i)T+(−14.5+25.1i)T2 |
| 31 | 1+(3.09+5.36i)T+(−15.5+26.8i)T2 |
| 37 | 1−7.87T+37T2 |
| 41 | 1+(−4.41−7.64i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−0.109+0.189i)T+(−21.5−37.2i)T2 |
| 47 | 1+(−0.624+1.08i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−1.33−2.32i)T+(−26.5+45.8i)T2 |
| 59 | 1+12.0T+59T2 |
| 61 | 1+(−4.36−7.55i)T+(−30.5+52.8i)T2 |
| 67 | 1+(6.91−11.9i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−1.78+3.09i)T+(−35.5−61.4i)T2 |
| 73 | 1+(3.26+5.65i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−3.08+5.33i)T+(−39.5−68.4i)T2 |
| 83 | 1+8.67T+83T2 |
| 89 | 1+15.1T+89T2 |
| 97 | 1+(−6.08+10.5i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.46649228659099017807377722898, −10.84744218970497641128800073550, −9.943631270564270523035448379693, −8.710883437532803834860790578013, −7.82267398268925229595116823733, −7.36341528432067934783024829182, −5.92142337250900525162389811332, −4.28382769991409376523461792515, −3.19016661966284561660177921283, −1.01038734614467746215122824393,
1.48577486305277133139762548770, 3.84591363846646054857197669544, 4.66941691218197822335558178707, 5.71107270475927664882825014889, 7.73924248527826972616332859791, 8.348544853803201447372651120576, 9.039410791129737983491409035771, 9.825692145016378008068612101296, 10.93801212619375801233885584050, 12.13765396938422315948782307399