L(s) = 1 | + 2.05·2-s + (0.5 − 0.866i)3-s + 2.22·4-s + (−0.274 + 0.475i)5-s + (1.02 − 1.77i)6-s + (2.59 − 0.527i)7-s + 0.456·8-s + (−0.499 − 0.866i)9-s + (−0.564 + 0.977i)10-s + (−2.34 + 4.06i)11-s + (1.11 − 1.92i)12-s + (−0.663 − 3.54i)13-s + (5.32 − 1.08i)14-s + (0.274 + 0.475i)15-s − 3.50·16-s − 0.603·17-s + ⋯ |
L(s) = 1 | + 1.45·2-s + (0.288 − 0.499i)3-s + 1.11·4-s + (−0.122 + 0.212i)5-s + (0.419 − 0.726i)6-s + (0.979 − 0.199i)7-s + 0.161·8-s + (−0.166 − 0.288i)9-s + (−0.178 + 0.309i)10-s + (−0.708 + 1.22i)11-s + (0.320 − 0.555i)12-s + (−0.184 − 0.982i)13-s + (1.42 − 0.289i)14-s + (0.0709 + 0.122i)15-s − 0.876·16-s − 0.146·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.946 + 0.323i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 273 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.946 + 0.323i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.70635 - 0.450350i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.70635 - 0.450350i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 + (-2.59 + 0.527i)T \) |
| 13 | \( 1 + (0.663 + 3.54i)T \) |
good | 2 | \( 1 - 2.05T + 2T^{2} \) |
| 5 | \( 1 + (0.274 - 0.475i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (2.34 - 4.06i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + 0.603T + 17T^{2} \) |
| 19 | \( 1 + (0.280 + 0.485i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 0.376T + 23T^{2} \) |
| 29 | \( 1 + (-2.09 - 3.62i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (0.577 + 0.999i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 8.80T + 37T^{2} \) |
| 41 | \( 1 + (3.96 + 6.85i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.747 - 1.29i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (1.09 - 1.90i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-4.52 - 7.83i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 8.53T + 59T^{2} \) |
| 61 | \( 1 + (3.71 + 6.42i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.79 + 8.31i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-2.88 + 5.00i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-7.24 - 12.5i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-7.31 + 12.6i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 14.8T + 83T^{2} \) |
| 89 | \( 1 - 9.18T + 89T^{2} \) |
| 97 | \( 1 + (-3.15 + 5.45i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.29269105365733184428775686212, −11.20699992775944011521677019642, −10.29537891577595015177998481402, −8.778486359152685546173271165635, −7.60154904970995619121038999201, −6.90354253933115546225911032161, −5.41724387305438855431616730182, −4.75966617864777879363003197982, −3.38671145260066128958807052597, −2.12676436934481645113374256720,
2.42021904308716418993873679538, 3.72177639620086344223807054618, 4.74811778516330195704552670470, 5.44814630057996683606345906098, 6.67322512150191429225763125394, 8.206855217722597339604626291692, 8.872398993563301408469863375665, 10.35862624388132104106164996173, 11.39450179686526896727301432861, 11.90969090053810999398394895537