L(s) = 1 | + 2.05·2-s + (0.5 − 0.866i)3-s + 2.22·4-s + (−0.274 + 0.475i)5-s + (1.02 − 1.77i)6-s + (2.59 − 0.527i)7-s + 0.456·8-s + (−0.499 − 0.866i)9-s + (−0.564 + 0.977i)10-s + (−2.34 + 4.06i)11-s + (1.11 − 1.92i)12-s + (−0.663 − 3.54i)13-s + (5.32 − 1.08i)14-s + (0.274 + 0.475i)15-s − 3.50·16-s − 0.603·17-s + ⋯ |
L(s) = 1 | + 1.45·2-s + (0.288 − 0.499i)3-s + 1.11·4-s + (−0.122 + 0.212i)5-s + (0.419 − 0.726i)6-s + (0.979 − 0.199i)7-s + 0.161·8-s + (−0.166 − 0.288i)9-s + (−0.178 + 0.309i)10-s + (−0.708 + 1.22i)11-s + (0.320 − 0.555i)12-s + (−0.184 − 0.982i)13-s + (1.42 − 0.289i)14-s + (0.0709 + 0.122i)15-s − 0.876·16-s − 0.146·17-s + ⋯ |
Λ(s)=(=(273s/2ΓC(s)L(s)(0.946+0.323i)Λ(2−s)
Λ(s)=(=(273s/2ΓC(s+1/2)L(s)(0.946+0.323i)Λ(1−s)
Degree: |
2 |
Conductor: |
273
= 3⋅7⋅13
|
Sign: |
0.946+0.323i
|
Analytic conductor: |
2.17991 |
Root analytic conductor: |
1.47645 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ273(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 273, ( :1/2), 0.946+0.323i)
|
Particular Values
L(1) |
≈ |
2.70635−0.450350i |
L(21) |
≈ |
2.70635−0.450350i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.5+0.866i)T |
| 7 | 1+(−2.59+0.527i)T |
| 13 | 1+(0.663+3.54i)T |
good | 2 | 1−2.05T+2T2 |
| 5 | 1+(0.274−0.475i)T+(−2.5−4.33i)T2 |
| 11 | 1+(2.34−4.06i)T+(−5.5−9.52i)T2 |
| 17 | 1+0.603T+17T2 |
| 19 | 1+(0.280+0.485i)T+(−9.5+16.4i)T2 |
| 23 | 1−0.376T+23T2 |
| 29 | 1+(−2.09−3.62i)T+(−14.5+25.1i)T2 |
| 31 | 1+(0.577+0.999i)T+(−15.5+26.8i)T2 |
| 37 | 1+8.80T+37T2 |
| 41 | 1+(3.96+6.85i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.747−1.29i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.09−1.90i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−4.52−7.83i)T+(−26.5+45.8i)T2 |
| 59 | 1−8.53T+59T2 |
| 61 | 1+(3.71+6.42i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−4.79+8.31i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−2.88+5.00i)T+(−35.5−61.4i)T2 |
| 73 | 1+(−7.24−12.5i)T+(−36.5+63.2i)T2 |
| 79 | 1+(−7.31+12.6i)T+(−39.5−68.4i)T2 |
| 83 | 1+14.8T+83T2 |
| 89 | 1−9.18T+89T2 |
| 97 | 1+(−3.15+5.45i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.29269105365733184428775686212, −11.20699992775944011521677019642, −10.29537891577595015177998481402, −8.778486359152685546173271165635, −7.60154904970995619121038999201, −6.90354253933115546225911032161, −5.41724387305438855431616730182, −4.75966617864777879363003197982, −3.38671145260066128958807052597, −2.12676436934481645113374256720,
2.42021904308716418993873679538, 3.72177639620086344223807054618, 4.74811778516330195704552670470, 5.44814630057996683606345906098, 6.67322512150191429225763125394, 8.206855217722597339604626291692, 8.872398993563301408469863375665, 10.35862624388132104106164996173, 11.39450179686526896727301432861, 11.90969090053810999398394895537