L(s) = 1 | + (−1.65 − 2.85i)5-s − 1.44·7-s + 1.81·11-s + (0.5 − 0.866i)13-s + (3.30 + 5.71i)17-s + (−1 − 4.24i)19-s + (2.39 − 4.14i)23-s + (−2.94 + 5.10i)25-s + (4.78 − 8.28i)29-s + 4.55·31-s + (2.39 + 4.14i)35-s − 5.89·37-s + (1.48 + 2.57i)41-s + (−4.17 − 7.22i)43-s + (1.48 − 2.57i)47-s + ⋯ |
L(s) = 1 | + (−0.738 − 1.27i)5-s − 0.547·7-s + 0.547·11-s + (0.138 − 0.240i)13-s + (0.800 + 1.38i)17-s + (−0.229 − 0.973i)19-s + (0.498 − 0.864i)23-s + (−0.589 + 1.02i)25-s + (0.888 − 1.53i)29-s + 0.817·31-s + (0.404 + 0.700i)35-s − 0.969·37-s + (0.231 + 0.401i)41-s + (−0.636 − 1.10i)43-s + (0.216 − 0.374i)47-s + ⋯ |
Λ(s)=(=(2736s/2ΓC(s)L(s)(−0.856+0.516i)Λ(2−s)
Λ(s)=(=(2736s/2ΓC(s+1/2)L(s)(−0.856+0.516i)Λ(1−s)
Degree: |
2 |
Conductor: |
2736
= 24⋅32⋅19
|
Sign: |
−0.856+0.516i
|
Analytic conductor: |
21.8470 |
Root analytic conductor: |
4.67408 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2736(577,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2736, ( :1/2), −0.856+0.516i)
|
Particular Values
L(1) |
≈ |
0.9816263894 |
L(21) |
≈ |
0.9816263894 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 19 | 1+(1+4.24i)T |
good | 5 | 1+(1.65+2.85i)T+(−2.5+4.33i)T2 |
| 7 | 1+1.44T+7T2 |
| 11 | 1−1.81T+11T2 |
| 13 | 1+(−0.5+0.866i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−3.30−5.71i)T+(−8.5+14.7i)T2 |
| 23 | 1+(−2.39+4.14i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−4.78+8.28i)T+(−14.5−25.1i)T2 |
| 31 | 1−4.55T+31T2 |
| 37 | 1+5.89T+37T2 |
| 41 | 1+(−1.48−2.57i)T+(−20.5+35.5i)T2 |
| 43 | 1+(4.17+7.22i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−1.48+2.57i)T+(−23.5−40.7i)T2 |
| 53 | 1+(−1.65+2.85i)T+(−26.5−45.8i)T2 |
| 59 | 1+(4.21+7.29i)T+(−29.5+51.0i)T2 |
| 61 | 1+(2.5−4.33i)T+(−30.5−52.8i)T2 |
| 67 | 1+(7.17−12.4i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−4.78−8.28i)T+(−35.5+61.4i)T2 |
| 73 | 1+(2.5+4.33i)T+(−36.5+63.2i)T2 |
| 79 | 1+(7.17+12.4i)T+(−39.5+68.4i)T2 |
| 83 | 1+3.63T+83T2 |
| 89 | 1+(8.25−14.2i)T+(−44.5−77.0i)T2 |
| 97 | 1+(6.44+11.1i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.431854882932722705739375320267, −8.080173568945960708362840261607, −6.93500104435601145130740430796, −6.24742106321867829497895006251, −5.32537346021819970872976274628, −4.43983849594356380067889313474, −3.89476230239202835254394120667, −2.82275564538882994472971357899, −1.37159603277123062616988382934, −0.35244167096086664316184137844,
1.37474455466796349619980555794, 3.07076986235672709601776021540, 3.16544232375494819346943649335, 4.25545554546828768554245358538, 5.29858735637684629927578550219, 6.32583406868920099758094559385, 6.90449559201036933871420981140, 7.46122664879619792107389713502, 8.261406388578560256313244329751, 9.252211836966521854377740079000