L(s) = 1 | + 5.56·2-s + 3.56·3-s + 22.9·4-s + 19.8·6-s − 6.05·7-s + 83.0·8-s − 14.3·9-s − 11·11-s + 81.6·12-s + 4.38·13-s − 33.6·14-s + 278.·16-s + 110.·17-s − 79.6·18-s − 94.2·19-s − 21.5·21-s − 61.1·22-s − 15.7·23-s + 295.·24-s + 24.3·26-s − 147.·27-s − 138.·28-s − 256.·29-s − 170.·31-s + 883.·32-s − 39.1·33-s + 614.·34-s + ⋯ |
L(s) = 1 | + 1.96·2-s + 0.685·3-s + 2.86·4-s + 1.34·6-s − 0.326·7-s + 3.66·8-s − 0.530·9-s − 0.301·11-s + 1.96·12-s + 0.0935·13-s − 0.642·14-s + 4.34·16-s + 1.57·17-s − 1.04·18-s − 1.13·19-s − 0.224·21-s − 0.592·22-s − 0.142·23-s + 2.51·24-s + 0.183·26-s − 1.04·27-s − 0.936·28-s − 1.64·29-s − 0.988·31-s + 4.88·32-s − 0.206·33-s + 3.10·34-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(275s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
7.147402378 |
L(21) |
≈ |
7.147402378 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1+11T |
good | 2 | 1−5.56T+8T2 |
| 3 | 1−3.56T+27T2 |
| 7 | 1+6.05T+343T2 |
| 13 | 1−4.38T+2.19e3T2 |
| 17 | 1−110.T+4.91e3T2 |
| 19 | 1+94.2T+6.85e3T2 |
| 23 | 1+15.7T+1.21e4T2 |
| 29 | 1+256.T+2.43e4T2 |
| 31 | 1+170.T+2.97e4T2 |
| 37 | 1−190.T+5.06e4T2 |
| 41 | 1−249.T+6.89e4T2 |
| 43 | 1+291.T+7.95e4T2 |
| 47 | 1+182.T+1.03e5T2 |
| 53 | 1−289.T+1.48e5T2 |
| 59 | 1−282.T+2.05e5T2 |
| 61 | 1−167.T+2.26e5T2 |
| 67 | 1−176.T+3.00e5T2 |
| 71 | 1−919.T+3.57e5T2 |
| 73 | 1+154.T+3.89e5T2 |
| 79 | 1+882.T+4.93e5T2 |
| 83 | 1+277.T+5.71e5T2 |
| 89 | 1+977.T+7.04e5T2 |
| 97 | 1−1.10e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.69572016605328762640258971878, −10.94642779717614699350595196286, −9.791117252549633231185960275416, −8.178086329002355171538578448866, −7.29460882652785275914456489596, −6.05652779798234456546893902156, −5.34495203944260822115612825842, −3.93093175354559237603576379166, −3.15864310528863240940297641906, −2.03656860698502110908573076507,
2.03656860698502110908573076507, 3.15864310528863240940297641906, 3.93093175354559237603576379166, 5.34495203944260822115612825842, 6.05652779798234456546893902156, 7.29460882652785275914456489596, 8.178086329002355171538578448866, 9.791117252549633231185960275416, 10.94642779717614699350595196286, 11.69572016605328762640258971878