L(s) = 1 | + 2.28·2-s − 2.58·3-s − 2.79·4-s − 5.90·6-s + 27.1·7-s − 24.6·8-s − 20.3·9-s + 11·11-s + 7.22·12-s + 9.09·13-s + 61.9·14-s − 33.8·16-s − 91.1·17-s − 46.3·18-s − 80.9·19-s − 70.2·21-s + 25.0·22-s − 208.·23-s + 63.7·24-s + 20.7·26-s + 122.·27-s − 75.8·28-s + 136.·29-s − 213.·31-s + 119.·32-s − 28.4·33-s − 207.·34-s + ⋯ |
L(s) = 1 | + 0.806·2-s − 0.497·3-s − 0.349·4-s − 0.401·6-s + 1.46·7-s − 1.08·8-s − 0.752·9-s + 0.301·11-s + 0.173·12-s + 0.194·13-s + 1.18·14-s − 0.528·16-s − 1.30·17-s − 0.606·18-s − 0.977·19-s − 0.729·21-s + 0.243·22-s − 1.88·23-s + 0.541·24-s + 0.156·26-s + 0.872·27-s − 0.511·28-s + 0.872·29-s − 1.23·31-s + 0.661·32-s − 0.150·33-s − 1.04·34-s + ⋯ |
Λ(s)=(=(275s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(275s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1 |
| 11 | 1−11T |
good | 2 | 1−2.28T+8T2 |
| 3 | 1+2.58T+27T2 |
| 7 | 1−27.1T+343T2 |
| 13 | 1−9.09T+2.19e3T2 |
| 17 | 1+91.1T+4.91e3T2 |
| 19 | 1+80.9T+6.85e3T2 |
| 23 | 1+208.T+1.21e4T2 |
| 29 | 1−136.T+2.43e4T2 |
| 31 | 1+213.T+2.97e4T2 |
| 37 | 1+351.T+5.06e4T2 |
| 41 | 1+1.21T+6.89e4T2 |
| 43 | 1+231.T+7.95e4T2 |
| 47 | 1+283.T+1.03e5T2 |
| 53 | 1−238.T+1.48e5T2 |
| 59 | 1−740.T+2.05e5T2 |
| 61 | 1−446.T+2.26e5T2 |
| 67 | 1+56.2T+3.00e5T2 |
| 71 | 1−684.T+3.57e5T2 |
| 73 | 1+428.T+3.89e5T2 |
| 79 | 1+1.26e3T+4.93e5T2 |
| 83 | 1+147.T+5.71e5T2 |
| 89 | 1−305.T+7.04e5T2 |
| 97 | 1+205.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.35833461559363289510649610378, −10.28565605243334638181519282200, −8.710979010477534752362927560307, −8.362795277592424680327795198242, −6.65246470465242875657853315457, −5.64443955631968414901410101741, −4.79219684052546232924181651648, −3.88695154171140260814616870886, −2.07944707267507891669780160271, 0,
2.07944707267507891669780160271, 3.88695154171140260814616870886, 4.79219684052546232924181651648, 5.64443955631968414901410101741, 6.65246470465242875657853315457, 8.362795277592424680327795198242, 8.710979010477534752362927560307, 10.28565605243334638181519282200, 11.35833461559363289510649610378