Properties

Label 2-279-31.4-c1-0-2
Degree 22
Conductor 279279
Sign 0.610+0.792i-0.610 + 0.792i
Analytic cond. 2.227822.22782
Root an. cond. 1.492591.49259
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.833 + 2.56i)2-s + (−4.26 + 3.10i)4-s − 3.42·5-s + (1.97 − 1.43i)7-s + (−7.15 − 5.19i)8-s + (−2.85 − 8.77i)10-s + (−3.56 + 2.58i)11-s + (−1.31 + 4.05i)13-s + (5.32 + 3.87i)14-s + (4.10 − 12.6i)16-s + (3.00 + 2.18i)17-s + (0.445 + 1.37i)19-s + (14.6 − 10.6i)20-s + (−9.60 − 6.97i)22-s + (1.84 + 1.34i)23-s + ⋯
L(s)  = 1  + (0.589 + 1.81i)2-s + (−2.13 + 1.55i)4-s − 1.52·5-s + (0.746 − 0.542i)7-s + (−2.52 − 1.83i)8-s + (−0.901 − 2.77i)10-s + (−1.07 + 0.779i)11-s + (−0.365 + 1.12i)13-s + (1.42 + 1.03i)14-s + (1.02 − 3.15i)16-s + (0.728 + 0.529i)17-s + (0.102 + 0.314i)19-s + (3.26 − 2.37i)20-s + (−2.04 − 1.48i)22-s + (0.385 + 0.280i)23-s + ⋯

Functional equation

Λ(s)=(279s/2ΓC(s)L(s)=((0.610+0.792i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 279 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.610 + 0.792i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(279s/2ΓC(s+1/2)L(s)=((0.610+0.792i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 279 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.610 + 0.792i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 279279    =    32313^{2} \cdot 31
Sign: 0.610+0.792i-0.610 + 0.792i
Analytic conductor: 2.227822.22782
Root analytic conductor: 1.492591.49259
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ279(190,)\chi_{279} (190, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 279, ( :1/2), 0.610+0.792i)(2,\ 279,\ (\ :1/2),\ -0.610 + 0.792i)

Particular Values

L(1)L(1) \approx 0.3683430.748619i0.368343 - 0.748619i
L(12)L(\frac12) \approx 0.3683430.748619i0.368343 - 0.748619i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
31 1+(4.473.31i)T 1 + (4.47 - 3.31i)T
good2 1+(0.8332.56i)T+(1.61+1.17i)T2 1 + (-0.833 - 2.56i)T + (-1.61 + 1.17i)T^{2}
5 1+3.42T+5T2 1 + 3.42T + 5T^{2}
7 1+(1.97+1.43i)T+(2.166.65i)T2 1 + (-1.97 + 1.43i)T + (2.16 - 6.65i)T^{2}
11 1+(3.562.58i)T+(3.3910.4i)T2 1 + (3.56 - 2.58i)T + (3.39 - 10.4i)T^{2}
13 1+(1.314.05i)T+(10.57.64i)T2 1 + (1.31 - 4.05i)T + (-10.5 - 7.64i)T^{2}
17 1+(3.002.18i)T+(5.25+16.1i)T2 1 + (-3.00 - 2.18i)T + (5.25 + 16.1i)T^{2}
19 1+(0.4451.37i)T+(15.3+11.1i)T2 1 + (-0.445 - 1.37i)T + (-15.3 + 11.1i)T^{2}
23 1+(1.841.34i)T+(7.10+21.8i)T2 1 + (-1.84 - 1.34i)T + (7.10 + 21.8i)T^{2}
29 1+(0.6962.14i)T+(23.4+17.0i)T2 1 + (-0.696 - 2.14i)T + (-23.4 + 17.0i)T^{2}
37 12.58T+37T2 1 - 2.58T + 37T^{2}
41 1+(1.47+4.54i)T+(33.1+24.0i)T2 1 + (1.47 + 4.54i)T + (-33.1 + 24.0i)T^{2}
43 1+(1.68+5.19i)T+(34.7+25.2i)T2 1 + (1.68 + 5.19i)T + (-34.7 + 25.2i)T^{2}
47 1+(0.06970.214i)T+(38.027.6i)T2 1 + (0.0697 - 0.214i)T + (-38.0 - 27.6i)T^{2}
53 1+(8.966.51i)T+(16.3+50.4i)T2 1 + (-8.96 - 6.51i)T + (16.3 + 50.4i)T^{2}
59 1+(1.103.38i)T+(47.734.6i)T2 1 + (1.10 - 3.38i)T + (-47.7 - 34.6i)T^{2}
61 1+9.41T+61T2 1 + 9.41T + 61T^{2}
67 18.78T+67T2 1 - 8.78T + 67T^{2}
71 1+(1.85+1.34i)T+(21.9+67.5i)T2 1 + (1.85 + 1.34i)T + (21.9 + 67.5i)T^{2}
73 1+(4.92+3.58i)T+(22.569.4i)T2 1 + (-4.92 + 3.58i)T + (22.5 - 69.4i)T^{2}
79 1+(13.69.90i)T+(24.4+75.1i)T2 1 + (-13.6 - 9.90i)T + (24.4 + 75.1i)T^{2}
83 1+(2.26+6.95i)T+(67.1+48.7i)T2 1 + (2.26 + 6.95i)T + (-67.1 + 48.7i)T^{2}
89 1+(11.5+8.37i)T+(27.584.6i)T2 1 + (-11.5 + 8.37i)T + (27.5 - 84.6i)T^{2}
97 1+(12.89.35i)T+(29.992.2i)T2 1 + (12.8 - 9.35i)T + (29.9 - 92.2i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.55398062878113550989938993092, −11.97040483878691962107135812530, −10.62248607044793962414346440193, −9.091945874158147205845419387244, −8.024746063392519893891630298572, −7.55266286528035478051869878932, −6.91546374698180463282311269113, −5.31008889305265747423312695257, −4.50850864697190089903873287759, −3.68520254786517973119690251500, 0.53862403165090236132012666874, 2.66124880440266245218504153731, 3.50176965074680509832242300931, 4.79651344934394229982298626374, 5.47378300231485144341669659073, 7.82504581456050135615201935893, 8.425198494827642282937205808788, 9.737892438421215801008626088773, 10.84021574249194916912021545446, 11.30331765226842306514718124661

Graph of the ZZ-function along the critical line