Properties

Label 2-2790-1.1-c1-0-37
Degree $2$
Conductor $2790$
Sign $-1$
Analytic cond. $22.2782$
Root an. cond. $4.71998$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 5-s − 2·7-s − 8-s − 10-s + 4·13-s + 2·14-s + 16-s − 6·17-s + 20-s + 25-s − 4·26-s − 2·28-s − 8·29-s − 31-s − 32-s + 6·34-s − 2·35-s + 4·37-s − 40-s − 10·41-s + 8·43-s + 4·47-s − 3·49-s − 50-s + 4·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.447·5-s − 0.755·7-s − 0.353·8-s − 0.316·10-s + 1.10·13-s + 0.534·14-s + 1/4·16-s − 1.45·17-s + 0.223·20-s + 1/5·25-s − 0.784·26-s − 0.377·28-s − 1.48·29-s − 0.179·31-s − 0.176·32-s + 1.02·34-s − 0.338·35-s + 0.657·37-s − 0.158·40-s − 1.56·41-s + 1.21·43-s + 0.583·47-s − 3/7·49-s − 0.141·50-s + 0.554·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2790 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2790 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2790\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(22.2782\)
Root analytic conductor: \(4.71998\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2790,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 - T \)
31 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \)
11 \( 1 + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 10 T + p T^{2} \)
43 \( 1 - 8 T + p T^{2} \)
47 \( 1 - 4 T + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + 14 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 + 6 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 12 T + p T^{2} \)
89 \( 1 + 16 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.736880779463300026877543577554, −7.68378196833310505351006793318, −6.91025413756572000512757594118, −6.21881102965997724253631115668, −5.65751449219398047877913070625, −4.37755450809302032813521596801, −3.45847952437465463730423854323, −2.45848603266431580474701776074, −1.46239928898903404461019333123, 0, 1.46239928898903404461019333123, 2.45848603266431580474701776074, 3.45847952437465463730423854323, 4.37755450809302032813521596801, 5.65751449219398047877913070625, 6.21881102965997724253631115668, 6.91025413756572000512757594118, 7.68378196833310505351006793318, 8.736880779463300026877543577554

Graph of the $Z$-function along the critical line