Properties

Label 2-2790-1.1-c1-0-48
Degree $2$
Conductor $2790$
Sign $-1$
Analytic cond. $22.2782$
Root an. cond. $4.71998$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 5-s + 3·7-s + 8-s − 10-s − 3·11-s − 2·13-s + 3·14-s + 16-s − 8·17-s − 7·19-s − 20-s − 3·22-s − 7·23-s + 25-s − 2·26-s + 3·28-s + 8·29-s − 31-s + 32-s − 8·34-s − 3·35-s − 4·37-s − 7·38-s − 40-s + 43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.447·5-s + 1.13·7-s + 0.353·8-s − 0.316·10-s − 0.904·11-s − 0.554·13-s + 0.801·14-s + 1/4·16-s − 1.94·17-s − 1.60·19-s − 0.223·20-s − 0.639·22-s − 1.45·23-s + 1/5·25-s − 0.392·26-s + 0.566·28-s + 1.48·29-s − 0.179·31-s + 0.176·32-s − 1.37·34-s − 0.507·35-s − 0.657·37-s − 1.13·38-s − 0.158·40-s + 0.152·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2790 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2790 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2790\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 31\)
Sign: $-1$
Analytic conductor: \(22.2782\)
Root analytic conductor: \(4.71998\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2790,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 + T \)
31 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 8 T + p T^{2} \)
19 \( 1 + 7 T + p T^{2} \)
23 \( 1 + 7 T + p T^{2} \)
29 \( 1 - 8 T + p T^{2} \)
37 \( 1 + 4 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 6 T + p T^{2} \)
53 \( 1 + 5 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - 10 T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 - T + p T^{2} \)
79 \( 1 - 13 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 3 T + p T^{2} \)
97 \( 1 - 6 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.206799610505433868450018584390, −7.81193722214417873281060328553, −6.74409318801140412787407651448, −6.19284717019496646388198927064, −4.87596174050881724410164289287, −4.71716814632695587336211253831, −3.83173526298716506960710350833, −2.48221200077289387244327586334, −1.94654126829090639479835146422, 0, 1.94654126829090639479835146422, 2.48221200077289387244327586334, 3.83173526298716506960710350833, 4.71716814632695587336211253831, 4.87596174050881724410164289287, 6.19284717019496646388198927064, 6.74409318801140412787407651448, 7.81193722214417873281060328553, 8.206799610505433868450018584390

Graph of the $Z$-function along the critical line