L(s) = 1 | + (0.766 − 0.642i)3-s + (0.939 − 0.342i)4-s + (0.173 − 0.984i)9-s + (0.5 − 0.866i)12-s + (−0.266 − 0.223i)13-s + (0.766 − 0.642i)16-s + (−0.5 − 0.866i)19-s + (−0.766 − 0.642i)25-s + (−0.500 − 0.866i)27-s + (−0.939 + 1.62i)31-s + (−0.173 − 0.984i)36-s + 1.28i·37-s − 0.347·39-s + (1.43 + 0.524i)43-s + (0.173 − 0.984i)48-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)3-s + (0.939 − 0.342i)4-s + (0.173 − 0.984i)9-s + (0.5 − 0.866i)12-s + (−0.266 − 0.223i)13-s + (0.766 − 0.642i)16-s + (−0.5 − 0.866i)19-s + (−0.766 − 0.642i)25-s + (−0.500 − 0.866i)27-s + (−0.939 + 1.62i)31-s + (−0.173 − 0.984i)36-s + 1.28i·37-s − 0.347·39-s + (1.43 + 0.524i)43-s + (0.173 − 0.984i)48-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.349+0.937i)Λ(1−s)
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.349+0.937i)Λ(1−s)
Degree: |
2 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.349+0.937i
|
Analytic conductor: |
1.39388 |
Root analytic conductor: |
1.18063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(1910,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2793, ( :0), 0.349+0.937i)
|
Particular Values
L(21) |
≈ |
1.937142352 |
L(21) |
≈ |
1.937142352 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.766+0.642i)T |
| 7 | 1 |
| 19 | 1+(0.5+0.866i)T |
good | 2 | 1+(−0.939+0.342i)T2 |
| 5 | 1+(0.766+0.642i)T2 |
| 11 | 1+(0.5−0.866i)T2 |
| 13 | 1+(0.266+0.223i)T+(0.173+0.984i)T2 |
| 17 | 1+(−0.939+0.342i)T2 |
| 23 | 1+(−0.766+0.642i)T2 |
| 29 | 1+(−0.939−0.342i)T2 |
| 31 | 1+(0.939−1.62i)T+(−0.5−0.866i)T2 |
| 37 | 1−1.28iT−T2 |
| 41 | 1+(−0.173+0.984i)T2 |
| 43 | 1+(−1.43−0.524i)T+(0.766+0.642i)T2 |
| 47 | 1+(−0.939−0.342i)T2 |
| 53 | 1+(0.766−0.642i)T2 |
| 59 | 1+(0.939−0.342i)T2 |
| 61 | 1+(−0.233−0.642i)T+(−0.766+0.642i)T2 |
| 67 | 1+(−1.93−0.342i)T+(0.939+0.342i)T2 |
| 71 | 1+(0.766+0.642i)T2 |
| 73 | 1+(−1.26−1.50i)T+(−0.173+0.984i)T2 |
| 79 | 1+(0.439+0.524i)T+(−0.173+0.984i)T2 |
| 83 | 1+(−0.5−0.866i)T2 |
| 89 | 1+(−0.173−0.984i)T2 |
| 97 | 1+(0.173+0.984i)T+(−0.939+0.342i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.699562342697277958169620877922, −8.039734006817836410426993303086, −7.23084243871308853287342651772, −6.74142786026584923520610596649, −6.00917347821099060174841011530, −5.04716184733886218186966558161, −3.85947627675494708454267819506, −2.86113413774530266778410411599, −2.23856253907122666516986393406, −1.16762126995952942506135026883,
1.91362060488317683748138259465, 2.44926523662053302857148600610, 3.68569873832408396817612834463, 4.00147513394692330703234632209, 5.32942311006452604177710729938, 6.03451959409928460416989555727, 7.07933659208487522002044404643, 7.74545341111830075819974387600, 8.204290215789956263068567153476, 9.284587045322667655575964261810