L(s) = 1 | + (0.766 − 0.642i)3-s + (0.939 − 0.342i)4-s + (0.173 − 0.984i)9-s + (0.5 − 0.866i)12-s + (−0.266 − 0.223i)13-s + (0.766 − 0.642i)16-s + (−0.5 − 0.866i)19-s + (−0.766 − 0.642i)25-s + (−0.500 − 0.866i)27-s + (−0.939 + 1.62i)31-s + (−0.173 − 0.984i)36-s + 1.28i·37-s − 0.347·39-s + (1.43 + 0.524i)43-s + (0.173 − 0.984i)48-s + ⋯ |
L(s) = 1 | + (0.766 − 0.642i)3-s + (0.939 − 0.342i)4-s + (0.173 − 0.984i)9-s + (0.5 − 0.866i)12-s + (−0.266 − 0.223i)13-s + (0.766 − 0.642i)16-s + (−0.5 − 0.866i)19-s + (−0.766 − 0.642i)25-s + (−0.500 − 0.866i)27-s + (−0.939 + 1.62i)31-s + (−0.173 − 0.984i)36-s + 1.28i·37-s − 0.347·39-s + (1.43 + 0.524i)43-s + (0.173 − 0.984i)48-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.349 + 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.349 + 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.937142352\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.937142352\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.766 + 0.642i)T \) |
| 7 | \( 1 \) |
| 19 | \( 1 + (0.5 + 0.866i)T \) |
good | 2 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 5 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 11 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.266 + 0.223i)T + (0.173 + 0.984i)T^{2} \) |
| 17 | \( 1 + (-0.939 + 0.342i)T^{2} \) |
| 23 | \( 1 + (-0.766 + 0.642i)T^{2} \) |
| 29 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 31 | \( 1 + (0.939 - 1.62i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 - 1.28iT - T^{2} \) |
| 41 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 43 | \( 1 + (-1.43 - 0.524i)T + (0.766 + 0.642i)T^{2} \) |
| 47 | \( 1 + (-0.939 - 0.342i)T^{2} \) |
| 53 | \( 1 + (0.766 - 0.642i)T^{2} \) |
| 59 | \( 1 + (0.939 - 0.342i)T^{2} \) |
| 61 | \( 1 + (-0.233 - 0.642i)T + (-0.766 + 0.642i)T^{2} \) |
| 67 | \( 1 + (-1.93 - 0.342i)T + (0.939 + 0.342i)T^{2} \) |
| 71 | \( 1 + (0.766 + 0.642i)T^{2} \) |
| 73 | \( 1 + (-1.26 - 1.50i)T + (-0.173 + 0.984i)T^{2} \) |
| 79 | \( 1 + (0.439 + 0.524i)T + (-0.173 + 0.984i)T^{2} \) |
| 83 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 89 | \( 1 + (-0.173 - 0.984i)T^{2} \) |
| 97 | \( 1 + (0.173 + 0.984i)T + (-0.939 + 0.342i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.699562342697277958169620877922, −8.039734006817836410426993303086, −7.23084243871308853287342651772, −6.74142786026584923520610596649, −6.00917347821099060174841011530, −5.04716184733886218186966558161, −3.85947627675494708454267819506, −2.86113413774530266778410411599, −2.23856253907122666516986393406, −1.16762126995952942506135026883,
1.91362060488317683748138259465, 2.44926523662053302857148600610, 3.68569873832408396817612834463, 4.00147513394692330703234632209, 5.32942311006452604177710729938, 6.03451959409928460416989555727, 7.07933659208487522002044404643, 7.74545341111830075819974387600, 8.204290215789956263068567153476, 9.284587045322667655575964261810