L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.766 + 0.642i)4-s + (−0.939 − 0.342i)9-s + (0.5 + 0.866i)12-s + (0.326 + 1.85i)13-s + (0.173 − 0.984i)16-s + (−0.5 + 0.866i)19-s + (−0.173 − 0.984i)25-s + (−0.5 + 0.866i)27-s + (0.766 + 1.32i)31-s + (0.939 − 0.342i)36-s + 1.96i·37-s + 1.87·39-s + (−0.266 − 0.223i)43-s + (−0.939 − 0.342i)48-s + ⋯ |
L(s) = 1 | + (0.173 − 0.984i)3-s + (−0.766 + 0.642i)4-s + (−0.939 − 0.342i)9-s + (0.5 + 0.866i)12-s + (0.326 + 1.85i)13-s + (0.173 − 0.984i)16-s + (−0.5 + 0.866i)19-s + (−0.173 − 0.984i)25-s + (−0.5 + 0.866i)27-s + (0.766 + 1.32i)31-s + (0.939 − 0.342i)36-s + 1.96i·37-s + 1.87·39-s + (−0.266 − 0.223i)43-s + (−0.939 − 0.342i)48-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.671−0.740i)Λ(1−s)
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.671−0.740i)Λ(1−s)
Degree: |
2 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.671−0.740i
|
Analytic conductor: |
1.39388 |
Root analytic conductor: |
1.18063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(2351,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2793, ( :0), 0.671−0.740i)
|
Particular Values
L(21) |
≈ |
0.8756466445 |
L(21) |
≈ |
0.8756466445 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.173+0.984i)T |
| 7 | 1 |
| 19 | 1+(0.5−0.866i)T |
good | 2 | 1+(0.766−0.642i)T2 |
| 5 | 1+(0.173+0.984i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 13 | 1+(−0.326−1.85i)T+(−0.939+0.342i)T2 |
| 17 | 1+(0.766−0.642i)T2 |
| 23 | 1+(−0.173+0.984i)T2 |
| 29 | 1+(0.766+0.642i)T2 |
| 31 | 1+(−0.766−1.32i)T+(−0.5+0.866i)T2 |
| 37 | 1−1.96iT−T2 |
| 41 | 1+(0.939+0.342i)T2 |
| 43 | 1+(0.266+0.223i)T+(0.173+0.984i)T2 |
| 47 | 1+(0.766+0.642i)T2 |
| 53 | 1+(0.173−0.984i)T2 |
| 59 | 1+(−0.766+0.642i)T2 |
| 61 | 1+(−0.826−0.984i)T+(−0.173+0.984i)T2 |
| 67 | 1+(−0.233+0.642i)T+(−0.766−0.642i)T2 |
| 71 | 1+(0.173+0.984i)T2 |
| 73 | 1+(−0.673−0.118i)T+(0.939+0.342i)T2 |
| 79 | 1+(−1.26−0.223i)T+(0.939+0.342i)T2 |
| 83 | 1+(−0.5+0.866i)T2 |
| 89 | 1+(0.939−0.342i)T2 |
| 97 | 1+(−0.939+0.342i)T+(0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.789108078231855338346435219014, −8.395433708400424953023200059000, −7.72211384550965562831810656361, −6.67309757852154338332769288653, −6.42560153442304587196720201755, −5.13803011437355749258103386355, −4.28634591160026558106083749072, −3.48613729844348860055313343403, −2.42371076888873624515443201298, −1.35074426434797745995099839904,
0.59781308088336191949865761881, 2.36170627648345842047261750464, 3.44040312021017779341716224720, 4.14598495543983918908964801258, 5.09620598327130620208992632977, 5.54193307198223537649088243892, 6.30179447144839747937629523180, 7.66258762209651927777942920191, 8.295290488430041898843808910311, 9.034820468552344851215424127829