L(s) = 1 | + (0.0249 − 0.999i)3-s + (0.583 + 0.811i)4-s + (−0.124 + 0.992i)7-s + (−0.998 − 0.0498i)9-s + (0.826 − 0.563i)12-s + (−1.57 + 0.662i)13-s + (−0.318 + 0.947i)16-s + (0.222 + 0.974i)19-s + (0.988 + 0.149i)21-s + (−0.542 + 0.840i)25-s + (−0.0747 + 0.997i)27-s + (−0.878 + 0.478i)28-s − 0.822·31-s + (−0.542 − 0.840i)36-s + (1.61 − 0.121i)37-s + ⋯ |
L(s) = 1 | + (0.0249 − 0.999i)3-s + (0.583 + 0.811i)4-s + (−0.124 + 0.992i)7-s + (−0.998 − 0.0498i)9-s + (0.826 − 0.563i)12-s + (−1.57 + 0.662i)13-s + (−0.318 + 0.947i)16-s + (0.222 + 0.974i)19-s + (0.988 + 0.149i)21-s + (−0.542 + 0.840i)25-s + (−0.0747 + 0.997i)27-s + (−0.878 + 0.478i)28-s − 0.822·31-s + (−0.542 − 0.840i)36-s + (1.61 − 0.121i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.233 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.233 - 0.972i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.034467542\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.034467542\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.0249 + 0.999i)T \) |
| 7 | \( 1 + (0.124 - 0.992i)T \) |
| 19 | \( 1 + (-0.222 - 0.974i)T \) |
good | 2 | \( 1 + (-0.583 - 0.811i)T^{2} \) |
| 5 | \( 1 + (0.542 - 0.840i)T^{2} \) |
| 11 | \( 1 + (-0.0747 + 0.997i)T^{2} \) |
| 13 | \( 1 + (1.57 - 0.662i)T + (0.698 - 0.715i)T^{2} \) |
| 17 | \( 1 + (-0.318 - 0.947i)T^{2} \) |
| 23 | \( 1 + (-0.980 + 0.198i)T^{2} \) |
| 29 | \( 1 + (-0.0249 + 0.999i)T^{2} \) |
| 31 | \( 1 + 0.822T + T^{2} \) |
| 37 | \( 1 + (-1.61 + 0.121i)T + (0.988 - 0.149i)T^{2} \) |
| 41 | \( 1 + (-0.542 + 0.840i)T^{2} \) |
| 43 | \( 1 + (-1.95 + 0.395i)T + (0.921 - 0.388i)T^{2} \) |
| 47 | \( 1 + (0.698 - 0.715i)T^{2} \) |
| 53 | \( 1 + (-0.318 + 0.947i)T^{2} \) |
| 59 | \( 1 + (0.124 - 0.992i)T^{2} \) |
| 61 | \( 1 + (1.30 - 1.27i)T + (0.0249 - 0.999i)T^{2} \) |
| 67 | \( 1 + (0.670 + 0.798i)T + (-0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.878 + 0.478i)T^{2} \) |
| 73 | \( 1 + (-0.120 - 0.158i)T + (-0.270 + 0.962i)T^{2} \) |
| 79 | \( 1 + (-0.168 - 0.463i)T + (-0.766 + 0.642i)T^{2} \) |
| 83 | \( 1 + (0.826 - 0.563i)T^{2} \) |
| 89 | \( 1 + (0.583 - 0.811i)T^{2} \) |
| 97 | \( 1 + (-1.79 + 0.653i)T + (0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.098063266831098934096939044882, −8.176682460683378091876123818378, −7.49630702712270607314084254984, −7.15693274626707159299792725478, −6.09138333944593411420246672798, −5.63258215108983014161306039455, −4.38584428458752071621665934394, −3.21184039246656447162758041864, −2.43656229732948460514272421017, −1.80138638100576939772116150391,
0.59931913364484919519524697518, 2.33479565731547478357625014926, 3.05602476662605820196293592981, 4.30018392698516630773058599200, 4.83124006063160143150845831932, 5.67246986156023508697751626543, 6.44301048326637958347738234436, 7.41789616757964152372429080630, 7.86135216381556640079250495341, 9.287650258841981754226888512181