L(s) = 1 | + (0.0249 − 0.999i)3-s + (0.583 + 0.811i)4-s + (−0.124 + 0.992i)7-s + (−0.998 − 0.0498i)9-s + (0.826 − 0.563i)12-s + (−1.57 + 0.662i)13-s + (−0.318 + 0.947i)16-s + (0.222 + 0.974i)19-s + (0.988 + 0.149i)21-s + (−0.542 + 0.840i)25-s + (−0.0747 + 0.997i)27-s + (−0.878 + 0.478i)28-s − 0.822·31-s + (−0.542 − 0.840i)36-s + (1.61 − 0.121i)37-s + ⋯ |
L(s) = 1 | + (0.0249 − 0.999i)3-s + (0.583 + 0.811i)4-s + (−0.124 + 0.992i)7-s + (−0.998 − 0.0498i)9-s + (0.826 − 0.563i)12-s + (−1.57 + 0.662i)13-s + (−0.318 + 0.947i)16-s + (0.222 + 0.974i)19-s + (0.988 + 0.149i)21-s + (−0.542 + 0.840i)25-s + (−0.0747 + 0.997i)27-s + (−0.878 + 0.478i)28-s − 0.822·31-s + (−0.542 − 0.840i)36-s + (1.61 − 0.121i)37-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.233−0.972i)Λ(1−s)
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.233−0.972i)Λ(1−s)
Degree: |
2 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.233−0.972i
|
Analytic conductor: |
1.39388 |
Root analytic conductor: |
1.18063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(185,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2793, ( :0), 0.233−0.972i)
|
Particular Values
L(21) |
≈ |
1.034467542 |
L(21) |
≈ |
1.034467542 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.0249+0.999i)T |
| 7 | 1+(0.124−0.992i)T |
| 19 | 1+(−0.222−0.974i)T |
good | 2 | 1+(−0.583−0.811i)T2 |
| 5 | 1+(0.542−0.840i)T2 |
| 11 | 1+(−0.0747+0.997i)T2 |
| 13 | 1+(1.57−0.662i)T+(0.698−0.715i)T2 |
| 17 | 1+(−0.318−0.947i)T2 |
| 23 | 1+(−0.980+0.198i)T2 |
| 29 | 1+(−0.0249+0.999i)T2 |
| 31 | 1+0.822T+T2 |
| 37 | 1+(−1.61+0.121i)T+(0.988−0.149i)T2 |
| 41 | 1+(−0.542+0.840i)T2 |
| 43 | 1+(−1.95+0.395i)T+(0.921−0.388i)T2 |
| 47 | 1+(0.698−0.715i)T2 |
| 53 | 1+(−0.318+0.947i)T2 |
| 59 | 1+(0.124−0.992i)T2 |
| 61 | 1+(1.30−1.27i)T+(0.0249−0.999i)T2 |
| 67 | 1+(0.670+0.798i)T+(−0.173+0.984i)T2 |
| 71 | 1+(0.878+0.478i)T2 |
| 73 | 1+(−0.120−0.158i)T+(−0.270+0.962i)T2 |
| 79 | 1+(−0.168−0.463i)T+(−0.766+0.642i)T2 |
| 83 | 1+(0.826−0.563i)T2 |
| 89 | 1+(0.583−0.811i)T2 |
| 97 | 1+(−1.79+0.653i)T+(0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.098063266831098934096939044882, −8.176682460683378091876123818378, −7.49630702712270607314084254984, −7.15693274626707159299792725478, −6.09138333944593411420246672798, −5.63258215108983014161306039455, −4.38584428458752071621665934394, −3.21184039246656447162758041864, −2.43656229732948460514272421017, −1.80138638100576939772116150391,
0.59931913364484919519524697518, 2.33479565731547478357625014926, 3.05602476662605820196293592981, 4.30018392698516630773058599200, 4.83124006063160143150845831932, 5.67246986156023508697751626543, 6.44301048326637958347738234436, 7.41789616757964152372429080630, 7.86135216381556640079250495341, 9.287650258841981754226888512181