L(s) = 1 | + (0.797 − 0.603i)3-s + (−0.878 − 0.478i)4-s + (0.995 − 0.0995i)7-s + (0.270 − 0.962i)9-s + (−0.988 + 0.149i)12-s + (0.145 + 0.201i)13-s + (0.542 + 0.840i)16-s + (0.900 − 0.433i)19-s + (0.733 − 0.680i)21-s + (−0.698 − 0.715i)25-s + (−0.365 − 0.930i)27-s + (−0.921 − 0.388i)28-s − 0.0498·31-s + (−0.698 + 0.715i)36-s + (0.890 + 0.349i)37-s + ⋯ |
L(s) = 1 | + (0.797 − 0.603i)3-s + (−0.878 − 0.478i)4-s + (0.995 − 0.0995i)7-s + (0.270 − 0.962i)9-s + (−0.988 + 0.149i)12-s + (0.145 + 0.201i)13-s + (0.542 + 0.840i)16-s + (0.900 − 0.433i)19-s + (0.733 − 0.680i)21-s + (−0.698 − 0.715i)25-s + (−0.365 − 0.930i)27-s + (−0.921 − 0.388i)28-s − 0.0498·31-s + (−0.698 + 0.715i)36-s + (0.890 + 0.349i)37-s + ⋯ |
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.252+0.967i)Λ(1−s)
Λ(s)=(=(2793s/2ΓC(s)L(s)(0.252+0.967i)Λ(1−s)
Degree: |
2 |
Conductor: |
2793
= 3⋅72⋅19
|
Sign: |
0.252+0.967i
|
Analytic conductor: |
1.39388 |
Root analytic conductor: |
1.18063 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2793(584,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2793, ( :0), 0.252+0.967i)
|
Particular Values
L(21) |
≈ |
1.496817628 |
L(21) |
≈ |
1.496817628 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−0.797+0.603i)T |
| 7 | 1+(−0.995+0.0995i)T |
| 19 | 1+(−0.900+0.433i)T |
good | 2 | 1+(0.878+0.478i)T2 |
| 5 | 1+(0.698+0.715i)T2 |
| 11 | 1+(−0.365−0.930i)T2 |
| 13 | 1+(−0.145−0.201i)T+(−0.318+0.947i)T2 |
| 17 | 1+(0.542−0.840i)T2 |
| 23 | 1+(−0.456+0.889i)T2 |
| 29 | 1+(−0.797+0.603i)T2 |
| 31 | 1+0.0498T+T2 |
| 37 | 1+(−0.890−0.349i)T+(0.733+0.680i)T2 |
| 41 | 1+(−0.698−0.715i)T2 |
| 43 | 1+(0.247−0.482i)T+(−0.583−0.811i)T2 |
| 47 | 1+(−0.318+0.947i)T2 |
| 53 | 1+(0.542+0.840i)T2 |
| 59 | 1+(−0.995+0.0995i)T2 |
| 61 | 1+(1.89−0.636i)T+(0.797−0.603i)T2 |
| 67 | 1+(1.27+1.52i)T+(−0.173+0.984i)T2 |
| 71 | 1+(0.921−0.388i)T2 |
| 73 | 1+(−0.950+0.428i)T+(0.661−0.749i)T2 |
| 79 | 1+(−0.135−0.372i)T+(−0.766+0.642i)T2 |
| 83 | 1+(−0.988+0.149i)T2 |
| 89 | 1+(−0.878+0.478i)T2 |
| 97 | 1+(−0.140+0.0511i)T+(0.766−0.642i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.866782828014789649460834369672, −7.979789484851636752599735739440, −7.68084672051546848370696664527, −6.55656191886376751339482362450, −5.77042532267771542208078961443, −4.78598847315277647855069613603, −4.16865741175530909167248554579, −3.12692273044954609262036400063, −1.94014339088109198051324721988, −1.02569329733898939482475152234,
1.53026188493785237850534419077, 2.78154784859434806254227044657, 3.65309276393886873978996082463, 4.33695780715441838503783617676, 5.09902578678749943418193988980, 5.75182960840384803649559402097, 7.35742436580405980369038368383, 7.79845754254051663150662272460, 8.411024771230598672487775277122, 9.113865886549118118564407796875