L(s) = 1 | + (0.797 − 0.603i)3-s + (−0.878 − 0.478i)4-s + (0.995 − 0.0995i)7-s + (0.270 − 0.962i)9-s + (−0.988 + 0.149i)12-s + (0.145 + 0.201i)13-s + (0.542 + 0.840i)16-s + (0.900 − 0.433i)19-s + (0.733 − 0.680i)21-s + (−0.698 − 0.715i)25-s + (−0.365 − 0.930i)27-s + (−0.921 − 0.388i)28-s − 0.0498·31-s + (−0.698 + 0.715i)36-s + (0.890 + 0.349i)37-s + ⋯ |
L(s) = 1 | + (0.797 − 0.603i)3-s + (−0.878 − 0.478i)4-s + (0.995 − 0.0995i)7-s + (0.270 − 0.962i)9-s + (−0.988 + 0.149i)12-s + (0.145 + 0.201i)13-s + (0.542 + 0.840i)16-s + (0.900 − 0.433i)19-s + (0.733 − 0.680i)21-s + (−0.698 − 0.715i)25-s + (−0.365 − 0.930i)27-s + (−0.921 − 0.388i)28-s − 0.0498·31-s + (−0.698 + 0.715i)36-s + (0.890 + 0.349i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2793 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.252 + 0.967i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.496817628\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.496817628\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (-0.797 + 0.603i)T \) |
| 7 | \( 1 + (-0.995 + 0.0995i)T \) |
| 19 | \( 1 + (-0.900 + 0.433i)T \) |
good | 2 | \( 1 + (0.878 + 0.478i)T^{2} \) |
| 5 | \( 1 + (0.698 + 0.715i)T^{2} \) |
| 11 | \( 1 + (-0.365 - 0.930i)T^{2} \) |
| 13 | \( 1 + (-0.145 - 0.201i)T + (-0.318 + 0.947i)T^{2} \) |
| 17 | \( 1 + (0.542 - 0.840i)T^{2} \) |
| 23 | \( 1 + (-0.456 + 0.889i)T^{2} \) |
| 29 | \( 1 + (-0.797 + 0.603i)T^{2} \) |
| 31 | \( 1 + 0.0498T + T^{2} \) |
| 37 | \( 1 + (-0.890 - 0.349i)T + (0.733 + 0.680i)T^{2} \) |
| 41 | \( 1 + (-0.698 - 0.715i)T^{2} \) |
| 43 | \( 1 + (0.247 - 0.482i)T + (-0.583 - 0.811i)T^{2} \) |
| 47 | \( 1 + (-0.318 + 0.947i)T^{2} \) |
| 53 | \( 1 + (0.542 + 0.840i)T^{2} \) |
| 59 | \( 1 + (-0.995 + 0.0995i)T^{2} \) |
| 61 | \( 1 + (1.89 - 0.636i)T + (0.797 - 0.603i)T^{2} \) |
| 67 | \( 1 + (1.27 + 1.52i)T + (-0.173 + 0.984i)T^{2} \) |
| 71 | \( 1 + (0.921 - 0.388i)T^{2} \) |
| 73 | \( 1 + (-0.950 + 0.428i)T + (0.661 - 0.749i)T^{2} \) |
| 79 | \( 1 + (-0.135 - 0.372i)T + (-0.766 + 0.642i)T^{2} \) |
| 83 | \( 1 + (-0.988 + 0.149i)T^{2} \) |
| 89 | \( 1 + (-0.878 + 0.478i)T^{2} \) |
| 97 | \( 1 + (-0.140 + 0.0511i)T + (0.766 - 0.642i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.866782828014789649460834369672, −7.979789484851636752599735739440, −7.68084672051546848370696664527, −6.55656191886376751339482362450, −5.77042532267771542208078961443, −4.78598847315277647855069613603, −4.16865741175530909167248554579, −3.12692273044954609262036400063, −1.94014339088109198051324721988, −1.02569329733898939482475152234,
1.53026188493785237850534419077, 2.78154784859434806254227044657, 3.65309276393886873978996082463, 4.33695780715441838503783617676, 5.09902578678749943418193988980, 5.75182960840384803649559402097, 7.35742436580405980369038368383, 7.79845754254051663150662272460, 8.411024771230598672487775277122, 9.113865886549118118564407796875