Properties

Label 2-28-28.19-c5-0-15
Degree $2$
Conductor $28$
Sign $-0.469 + 0.882i$
Analytic cond. $4.49074$
Root an. cond. $2.11913$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (4.87 − 2.86i)2-s + (−5.07 − 8.78i)3-s + (15.5 − 27.9i)4-s + (−73.9 − 42.6i)5-s + (−49.9 − 28.2i)6-s + (80.3 + 101. i)7-s + (−4.39 − 180. i)8-s + (70.0 − 121. i)9-s + (−482. + 3.91i)10-s + (256. − 148. i)11-s + (−324. + 5.26i)12-s + 324. i·13-s + (683. + 265. i)14-s + 866. i·15-s + (−540. − 869. i)16-s + (1.37e3 − 795. i)17-s + ⋯
L(s)  = 1  + (0.861 − 0.506i)2-s + (−0.325 − 0.563i)3-s + (0.485 − 0.874i)4-s + (−1.32 − 0.763i)5-s + (−0.566 − 0.320i)6-s + (0.620 + 0.784i)7-s + (−0.0242 − 0.999i)8-s + (0.288 − 0.498i)9-s + (−1.52 + 0.0123i)10-s + (0.640 − 0.369i)11-s + (−0.650 + 0.0105i)12-s + 0.533i·13-s + (0.932 + 0.361i)14-s + 0.994i·15-s + (−0.527 − 0.849i)16-s + (1.15 − 0.667i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.469 + 0.882i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 28 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.469 + 0.882i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(28\)    =    \(2^{2} \cdot 7\)
Sign: $-0.469 + 0.882i$
Analytic conductor: \(4.49074\)
Root analytic conductor: \(2.11913\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{28} (19, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 28,\ (\ :5/2),\ -0.469 + 0.882i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.969562 - 1.61393i\)
\(L(\frac12)\) \(\approx\) \(0.969562 - 1.61393i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-4.87 + 2.86i)T \)
7 \( 1 + (-80.3 - 101. i)T \)
good3 \( 1 + (5.07 + 8.78i)T + (-121.5 + 210. i)T^{2} \)
5 \( 1 + (73.9 + 42.6i)T + (1.56e3 + 2.70e3i)T^{2} \)
11 \( 1 + (-256. + 148. i)T + (8.05e4 - 1.39e5i)T^{2} \)
13 \( 1 - 324. iT - 3.71e5T^{2} \)
17 \( 1 + (-1.37e3 + 795. i)T + (7.09e5 - 1.22e6i)T^{2} \)
19 \( 1 + (587. - 1.01e3i)T + (-1.23e6 - 2.14e6i)T^{2} \)
23 \( 1 + (-4.09e3 - 2.36e3i)T + (3.21e6 + 5.57e6i)T^{2} \)
29 \( 1 + 4.56e3T + 2.05e7T^{2} \)
31 \( 1 + (987. + 1.71e3i)T + (-1.43e7 + 2.47e7i)T^{2} \)
37 \( 1 + (-669. + 1.15e3i)T + (-3.46e7 - 6.00e7i)T^{2} \)
41 \( 1 + 9.20e3iT - 1.15e8T^{2} \)
43 \( 1 + 1.07e3iT - 1.47e8T^{2} \)
47 \( 1 + (-1.11e3 + 1.92e3i)T + (-1.14e8 - 1.98e8i)T^{2} \)
53 \( 1 + (-4.12e3 - 7.14e3i)T + (-2.09e8 + 3.62e8i)T^{2} \)
59 \( 1 + (-2.06e4 - 3.58e4i)T + (-3.57e8 + 6.19e8i)T^{2} \)
61 \( 1 + (-1.17e4 - 6.79e3i)T + (4.22e8 + 7.31e8i)T^{2} \)
67 \( 1 + (-2.42e4 + 1.40e4i)T + (6.75e8 - 1.16e9i)T^{2} \)
71 \( 1 - 6.32e4iT - 1.80e9T^{2} \)
73 \( 1 + (1.16e4 - 6.71e3i)T + (1.03e9 - 1.79e9i)T^{2} \)
79 \( 1 + (9.71e3 + 5.61e3i)T + (1.53e9 + 2.66e9i)T^{2} \)
83 \( 1 + 3.04e4T + 3.93e9T^{2} \)
89 \( 1 + (-6.56e4 - 3.79e4i)T + (2.79e9 + 4.83e9i)T^{2} \)
97 \( 1 + 7.93e4iT - 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.52314343968041215886710187322, −14.56520940099580017509565146501, −12.87246623034947686088743895832, −11.91130761546460204632821135714, −11.47910971606163952155102642835, −9.125704616579816536461780684323, −7.32345030565468155991835038390, −5.47579834116459124969990319605, −3.84643567060097433571843150918, −1.13586621627236100520069221193, 3.64124437612353444007345871687, 4.81125269373498512964341485557, 7.00214812438890266848349908494, 7.983762009783164362111964756124, 10.67229411491704566302210808152, 11.42325157483841965293710568919, 12.89246339073494809753060311571, 14.60918905746780055675025486603, 15.10869344991163992642141606196, 16.38983757362883077741397255025

Graph of the $Z$-function along the critical line