L(s) = 1 | + (4.87 + 2.86i)2-s + (−5.07 + 8.78i)3-s + (15.5 + 27.9i)4-s + (−73.9 + 42.6i)5-s + (−49.9 + 28.2i)6-s + (80.3 − 101. i)7-s + (−4.39 + 180. i)8-s + (70.0 + 121. i)9-s + (−482. − 3.91i)10-s + (256. + 148. i)11-s + (−324. − 5.26i)12-s − 324. i·13-s + (683. − 265. i)14-s − 866. i·15-s + (−540. + 869. i)16-s + (1.37e3 + 795. i)17-s + ⋯ |
L(s) = 1 | + (0.861 + 0.506i)2-s + (−0.325 + 0.563i)3-s + (0.485 + 0.874i)4-s + (−1.32 + 0.763i)5-s + (−0.566 + 0.320i)6-s + (0.620 − 0.784i)7-s + (−0.0242 + 0.999i)8-s + (0.288 + 0.498i)9-s + (−1.52 − 0.0123i)10-s + (0.640 + 0.369i)11-s + (−0.650 − 0.0105i)12-s − 0.533i·13-s + (0.932 − 0.361i)14-s − 0.994i·15-s + (−0.527 + 0.849i)16-s + (1.15 + 0.667i)17-s + ⋯ |
Λ(s)=(=(28s/2ΓC(s)L(s)(−0.469−0.882i)Λ(6−s)
Λ(s)=(=(28s/2ΓC(s+5/2)L(s)(−0.469−0.882i)Λ(1−s)
Degree: |
2 |
Conductor: |
28
= 22⋅7
|
Sign: |
−0.469−0.882i
|
Analytic conductor: |
4.49074 |
Root analytic conductor: |
2.11913 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ28(3,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 28, ( :5/2), −0.469−0.882i)
|
Particular Values
L(3) |
≈ |
0.969562+1.61393i |
L(21) |
≈ |
0.969562+1.61393i |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4.87−2.86i)T |
| 7 | 1+(−80.3+101.i)T |
good | 3 | 1+(5.07−8.78i)T+(−121.5−210.i)T2 |
| 5 | 1+(73.9−42.6i)T+(1.56e3−2.70e3i)T2 |
| 11 | 1+(−256.−148.i)T+(8.05e4+1.39e5i)T2 |
| 13 | 1+324.iT−3.71e5T2 |
| 17 | 1+(−1.37e3−795.i)T+(7.09e5+1.22e6i)T2 |
| 19 | 1+(587.+1.01e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(−4.09e3+2.36e3i)T+(3.21e6−5.57e6i)T2 |
| 29 | 1+4.56e3T+2.05e7T2 |
| 31 | 1+(987.−1.71e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(−669.−1.15e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1−9.20e3iT−1.15e8T2 |
| 43 | 1−1.07e3iT−1.47e8T2 |
| 47 | 1+(−1.11e3−1.92e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−4.12e3+7.14e3i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(−2.06e4+3.58e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(−1.17e4+6.79e3i)T+(4.22e8−7.31e8i)T2 |
| 67 | 1+(−2.42e4−1.40e4i)T+(6.75e8+1.16e9i)T2 |
| 71 | 1+6.32e4iT−1.80e9T2 |
| 73 | 1+(1.16e4+6.71e3i)T+(1.03e9+1.79e9i)T2 |
| 79 | 1+(9.71e3−5.61e3i)T+(1.53e9−2.66e9i)T2 |
| 83 | 1+3.04e4T+3.93e9T2 |
| 89 | 1+(−6.56e4+3.79e4i)T+(2.79e9−4.83e9i)T2 |
| 97 | 1−7.93e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−16.38983757362883077741397255025, −15.10869344991163992642141606196, −14.60918905746780055675025486603, −12.89246339073494809753060311571, −11.42325157483841965293710568919, −10.67229411491704566302210808152, −7.983762009783164362111964756124, −7.00214812438890266848349908494, −4.81125269373498512964341485557, −3.64124437612353444007345871687,
1.13586621627236100520069221193, 3.84643567060097433571843150918, 5.47579834116459124969990319605, 7.32345030565468155991835038390, 9.125704616579816536461780684323, 11.47910971606163952155102642835, 11.91130761546460204632821135714, 12.87246623034947686088743895832, 14.56520940099580017509565146501, 15.52314343968041215886710187322