L(s) = 1 | + 26.0i·3-s + (−26.2 − 49.3i)5-s + 49i·7-s − 436.·9-s + 711.·11-s − 1.00e3i·13-s + (1.28e3 − 683. i)15-s + 1.70e3i·17-s + 1.91e3·19-s − 1.27e3·21-s + 3.81e3i·23-s + (−1.74e3 + 2.58e3i)25-s − 5.05e3i·27-s + 3.52e3·29-s − 4.04e3·31-s + ⋯ |
L(s) = 1 | + 1.67i·3-s + (−0.469 − 0.883i)5-s + 0.377i·7-s − 1.79·9-s + 1.77·11-s − 1.65i·13-s + (1.47 − 0.784i)15-s + 1.43i·17-s + 1.21·19-s − 0.632·21-s + 1.50i·23-s + (−0.559 + 0.828i)25-s − 1.33i·27-s + 0.777·29-s − 0.755·31-s + ⋯ |
Λ(s)=(=(280s/2ΓC(s)L(s)(−0.469−0.883i)Λ(6−s)
Λ(s)=(=(280s/2ΓC(s+5/2)L(s)(−0.469−0.883i)Λ(1−s)
Degree: |
2 |
Conductor: |
280
= 23⋅5⋅7
|
Sign: |
−0.469−0.883i
|
Analytic conductor: |
44.9074 |
Root analytic conductor: |
6.70130 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ280(169,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 280, ( :5/2), −0.469−0.883i)
|
Particular Values
L(3) |
≈ |
1.840341539 |
L(21) |
≈ |
1.840341539 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(26.2+49.3i)T |
| 7 | 1−49iT |
good | 3 | 1−26.0iT−243T2 |
| 11 | 1−711.T+1.61e5T2 |
| 13 | 1+1.00e3iT−3.71e5T2 |
| 17 | 1−1.70e3iT−1.41e6T2 |
| 19 | 1−1.91e3T+2.47e6T2 |
| 23 | 1−3.81e3iT−6.43e6T2 |
| 29 | 1−3.52e3T+2.05e7T2 |
| 31 | 1+4.04e3T+2.86e7T2 |
| 37 | 1+6.34e3iT−6.93e7T2 |
| 41 | 1−3.36e3T+1.15e8T2 |
| 43 | 1−7.74iT−1.47e8T2 |
| 47 | 1−7.47e3iT−2.29e8T2 |
| 53 | 1+7.61e3iT−4.18e8T2 |
| 59 | 1−3.07e4T+7.14e8T2 |
| 61 | 1+3.42e4T+8.44e8T2 |
| 67 | 1−4.23e4iT−1.35e9T2 |
| 71 | 1+2.10e4T+1.80e9T2 |
| 73 | 1+5.38e3iT−2.07e9T2 |
| 79 | 1+5.47e3T+3.07e9T2 |
| 83 | 1−3.12e4iT−3.93e9T2 |
| 89 | 1−2.53e4T+5.58e9T2 |
| 97 | 1−6.00e4iT−8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.28659188466008338906042524158, −10.23874460946757221235035571001, −9.369754120071252802182616110300, −8.796147755840132576765488339071, −7.75862417096132051732118941032, −5.87217742702247560609457062561, −5.17952774377948260449694506914, −3.95514592415180164011899544399, −3.42138392079361631356403638299, −1.13975789508088119970262117512,
0.60287525681054035563628802796, 1.72071687333095428338303404125, 2.99206825645812053212956633981, 4.36731053144520171152802134966, 6.29969205247079320135844072683, 6.90575843564027903390845581692, 7.31958788421109641159675679113, 8.621343086603898869133834729070, 9.599879082676025983170495023519, 11.18759599353112629689627682442