Properties

Label 2-285-1.1-c9-0-19
Degree $2$
Conductor $285$
Sign $1$
Analytic cond. $146.785$
Root an. cond. $12.1154$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 21.3·2-s − 81·3-s − 55.0·4-s − 625·5-s − 1.73e3·6-s + 6.10e3·7-s − 1.21e4·8-s + 6.56e3·9-s − 1.33e4·10-s + 622.·11-s + 4.46e3·12-s − 1.44e4·13-s + 1.30e5·14-s + 5.06e4·15-s − 2.30e5·16-s + 4.38e5·17-s + 1.40e5·18-s + 1.30e5·19-s + 3.44e4·20-s − 4.94e5·21-s + 1.33e4·22-s − 2.57e6·23-s + 9.81e5·24-s + 3.90e5·25-s − 3.09e5·26-s − 5.31e5·27-s − 3.36e5·28-s + ⋯
L(s)  = 1  + 0.944·2-s − 0.577·3-s − 0.107·4-s − 0.447·5-s − 0.545·6-s + 0.961·7-s − 1.04·8-s + 0.333·9-s − 0.422·10-s + 0.0128·11-s + 0.0621·12-s − 0.140·13-s + 0.908·14-s + 0.258·15-s − 0.880·16-s + 1.27·17-s + 0.314·18-s + 0.229·19-s + 0.0481·20-s − 0.555·21-s + 0.0121·22-s − 1.92·23-s + 0.604·24-s + 0.200·25-s − 0.132·26-s − 0.192·27-s − 0.103·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(146.785\)
Root analytic conductor: \(12.1154\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(2.011896691\)
\(L(\frac12)\) \(\approx\) \(2.011896691\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 + 625T \)
19 \( 1 - 1.30e5T \)
good2 \( 1 - 21.3T + 512T^{2} \)
7 \( 1 - 6.10e3T + 4.03e7T^{2} \)
11 \( 1 - 622.T + 2.35e9T^{2} \)
13 \( 1 + 1.44e4T + 1.06e10T^{2} \)
17 \( 1 - 4.38e5T + 1.18e11T^{2} \)
23 \( 1 + 2.57e6T + 1.80e12T^{2} \)
29 \( 1 + 2.25e6T + 1.45e13T^{2} \)
31 \( 1 + 7.41e6T + 2.64e13T^{2} \)
37 \( 1 + 1.41e7T + 1.29e14T^{2} \)
41 \( 1 - 1.50e7T + 3.27e14T^{2} \)
43 \( 1 - 1.00e7T + 5.02e14T^{2} \)
47 \( 1 - 4.54e7T + 1.11e15T^{2} \)
53 \( 1 + 4.79e6T + 3.29e15T^{2} \)
59 \( 1 - 1.12e8T + 8.66e15T^{2} \)
61 \( 1 + 1.94e7T + 1.16e16T^{2} \)
67 \( 1 + 1.60e8T + 2.72e16T^{2} \)
71 \( 1 - 2.21e7T + 4.58e16T^{2} \)
73 \( 1 - 3.25e8T + 5.88e16T^{2} \)
79 \( 1 - 5.78e8T + 1.19e17T^{2} \)
83 \( 1 + 5.46e8T + 1.86e17T^{2} \)
89 \( 1 + 9.00e8T + 3.50e17T^{2} \)
97 \( 1 - 1.71e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.46535764611806231235892369586, −9.352986371068976090734051966544, −8.170423506300906151350295268808, −7.31538026730037089614347020057, −5.85707384360691699275139992010, −5.31187303398777377552895854194, −4.26839401778169326461589800059, −3.51912994798924211648494547970, −1.93919887950630006436407520917, −0.56240883126517642510858289053, 0.56240883126517642510858289053, 1.93919887950630006436407520917, 3.51912994798924211648494547970, 4.26839401778169326461589800059, 5.31187303398777377552895854194, 5.85707384360691699275139992010, 7.31538026730037089614347020057, 8.170423506300906151350295268808, 9.352986371068976090734051966544, 10.46535764611806231235892369586

Graph of the $Z$-function along the critical line