Properties

Label 2-285-1.1-c9-0-16
Degree $2$
Conductor $285$
Sign $1$
Analytic cond. $146.785$
Root an. cond. $12.1154$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.187·2-s − 81·3-s − 511.·4-s − 625·5-s + 15.2·6-s + 905.·7-s + 192.·8-s + 6.56e3·9-s + 117.·10-s + 8.62e4·11-s + 4.14e4·12-s − 7.58e4·13-s − 169.·14-s + 5.06e4·15-s + 2.62e5·16-s − 3.13e5·17-s − 1.23e3·18-s + 1.30e5·19-s + 3.19e5·20-s − 7.33e4·21-s − 1.61e4·22-s + 1.18e6·23-s − 1.55e4·24-s + 3.90e5·25-s + 1.42e4·26-s − 5.31e5·27-s − 4.63e5·28-s + ⋯
L(s)  = 1  − 0.00829·2-s − 0.577·3-s − 0.999·4-s − 0.447·5-s + 0.00479·6-s + 0.142·7-s + 0.0165·8-s + 0.333·9-s + 0.00371·10-s + 1.77·11-s + 0.577·12-s − 0.737·13-s − 0.00118·14-s + 0.258·15-s + 0.999·16-s − 0.910·17-s − 0.00276·18-s + 0.229·19-s + 0.447·20-s − 0.0822·21-s − 0.0147·22-s + 0.883·23-s − 0.00957·24-s + 0.200·25-s + 0.00611·26-s − 0.192·27-s − 0.142·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 285 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(285\)    =    \(3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(146.785\)
Root analytic conductor: \(12.1154\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 285,\ (\ :9/2),\ 1)\)

Particular Values

\(L(5)\) \(\approx\) \(1.029614663\)
\(L(\frac12)\) \(\approx\) \(1.029614663\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 81T \)
5 \( 1 + 625T \)
19 \( 1 - 1.30e5T \)
good2 \( 1 + 0.187T + 512T^{2} \)
7 \( 1 - 905.T + 4.03e7T^{2} \)
11 \( 1 - 8.62e4T + 2.35e9T^{2} \)
13 \( 1 + 7.58e4T + 1.06e10T^{2} \)
17 \( 1 + 3.13e5T + 1.18e11T^{2} \)
23 \( 1 - 1.18e6T + 1.80e12T^{2} \)
29 \( 1 - 5.53e6T + 1.45e13T^{2} \)
31 \( 1 + 6.53e6T + 2.64e13T^{2} \)
37 \( 1 - 3.79e5T + 1.29e14T^{2} \)
41 \( 1 + 3.21e7T + 3.27e14T^{2} \)
43 \( 1 + 6.90e6T + 5.02e14T^{2} \)
47 \( 1 - 1.52e7T + 1.11e15T^{2} \)
53 \( 1 - 1.29e7T + 3.29e15T^{2} \)
59 \( 1 + 3.84e7T + 8.66e15T^{2} \)
61 \( 1 + 3.41e7T + 1.16e16T^{2} \)
67 \( 1 + 2.11e8T + 2.72e16T^{2} \)
71 \( 1 - 2.42e8T + 4.58e16T^{2} \)
73 \( 1 - 2.08e8T + 5.88e16T^{2} \)
79 \( 1 + 6.74e8T + 1.19e17T^{2} \)
83 \( 1 - 9.70e7T + 1.86e17T^{2} \)
89 \( 1 + 2.48e7T + 3.50e17T^{2} \)
97 \( 1 - 1.09e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.18060345324400381235847386387, −9.218382945456632124844278952376, −8.577163173916957583189942201763, −7.24995761899208855682326982093, −6.39356522782019151134945969256, −5.04339397561928763573100514307, −4.38415527838771827873350480918, −3.37836375733409083133909016834, −1.53345614812898033216802698957, −0.50219025444356863564505029755, 0.50219025444356863564505029755, 1.53345614812898033216802698957, 3.37836375733409083133909016834, 4.38415527838771827873350480918, 5.04339397561928763573100514307, 6.39356522782019151134945969256, 7.24995761899208855682326982093, 8.577163173916957583189942201763, 9.218382945456632124844278952376, 10.18060345324400381235847386387

Graph of the $Z$-function along the critical line