L(s) = 1 | + 2-s − 3-s + 4-s − 6-s + 2.73·7-s + 8-s + 9-s + 5.19·11-s − 12-s + 4.73·13-s + 2.73·14-s + 16-s − 2.73·17-s + 18-s + 19-s − 2.73·21-s + 5.19·22-s + 8.46·23-s − 24-s + 4.73·26-s − 27-s + 2.73·28-s − 9.19·29-s − 5.92·31-s + 32-s − 5.19·33-s − 2.73·34-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.408·6-s + 1.03·7-s + 0.353·8-s + 0.333·9-s + 1.56·11-s − 0.288·12-s + 1.31·13-s + 0.730·14-s + 0.250·16-s − 0.662·17-s + 0.235·18-s + 0.229·19-s − 0.596·21-s + 1.10·22-s + 1.76·23-s − 0.204·24-s + 0.928·26-s − 0.192·27-s + 0.516·28-s − 1.70·29-s − 1.06·31-s + 0.176·32-s − 0.904·33-s − 0.468·34-s + ⋯ |
Λ(s)=(=(2850s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2850s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.252620128 |
L(21) |
≈ |
3.252620128 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1−T |
| 3 | 1+T |
| 5 | 1 |
| 19 | 1−T |
good | 7 | 1−2.73T+7T2 |
| 11 | 1−5.19T+11T2 |
| 13 | 1−4.73T+13T2 |
| 17 | 1+2.73T+17T2 |
| 23 | 1−8.46T+23T2 |
| 29 | 1+9.19T+29T2 |
| 31 | 1+5.92T+31T2 |
| 37 | 1+8.92T+37T2 |
| 41 | 1+41T2 |
| 43 | 1−8.73T+43T2 |
| 47 | 1+3.46T+47T2 |
| 53 | 1+4.66T+53T2 |
| 59 | 1−2.19T+59T2 |
| 61 | 1−8.26T+61T2 |
| 67 | 1+5.19T+67T2 |
| 71 | 1+10.1T+71T2 |
| 73 | 1−14.4T+73T2 |
| 79 | 1−5.92T+79T2 |
| 83 | 1−16.6T+83T2 |
| 89 | 1−3.92T+89T2 |
| 97 | 1−17.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.983393638329352776948390823111, −7.88259923770659831535443333040, −6.99688805945246289905831484142, −6.48653844734527045112358021653, −5.57697346970628539897524518216, −4.97491738302514296442542307338, −4.02340333180061077855155384203, −3.49628878613053952275137333029, −1.88897408435967492974056121666, −1.17707155491389899811605176996,
1.17707155491389899811605176996, 1.88897408435967492974056121666, 3.49628878613053952275137333029, 4.02340333180061077855155384203, 4.97491738302514296442542307338, 5.57697346970628539897524518216, 6.48653844734527045112358021653, 6.99688805945246289905831484142, 7.88259923770659831535443333040, 8.983393638329352776948390823111