Properties

Label 2-2850-1.1-c1-0-26
Degree $2$
Conductor $2850$
Sign $1$
Analytic cond. $22.7573$
Root an. cond. $4.77046$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s + 2.73·7-s + 8-s + 9-s + 5.19·11-s − 12-s + 4.73·13-s + 2.73·14-s + 16-s − 2.73·17-s + 18-s + 19-s − 2.73·21-s + 5.19·22-s + 8.46·23-s − 24-s + 4.73·26-s − 27-s + 2.73·28-s − 9.19·29-s − 5.92·31-s + 32-s − 5.19·33-s − 2.73·34-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 0.5·4-s − 0.408·6-s + 1.03·7-s + 0.353·8-s + 0.333·9-s + 1.56·11-s − 0.288·12-s + 1.31·13-s + 0.730·14-s + 0.250·16-s − 0.662·17-s + 0.235·18-s + 0.229·19-s − 0.596·21-s + 1.10·22-s + 1.76·23-s − 0.204·24-s + 0.928·26-s − 0.192·27-s + 0.516·28-s − 1.70·29-s − 1.06·31-s + 0.176·32-s − 0.904·33-s − 0.468·34-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(22.7573\)
Root analytic conductor: \(4.77046\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.252620128\)
\(L(\frac12)\) \(\approx\) \(3.252620128\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
19 \( 1 - T \)
good7 \( 1 - 2.73T + 7T^{2} \)
11 \( 1 - 5.19T + 11T^{2} \)
13 \( 1 - 4.73T + 13T^{2} \)
17 \( 1 + 2.73T + 17T^{2} \)
23 \( 1 - 8.46T + 23T^{2} \)
29 \( 1 + 9.19T + 29T^{2} \)
31 \( 1 + 5.92T + 31T^{2} \)
37 \( 1 + 8.92T + 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 - 8.73T + 43T^{2} \)
47 \( 1 + 3.46T + 47T^{2} \)
53 \( 1 + 4.66T + 53T^{2} \)
59 \( 1 - 2.19T + 59T^{2} \)
61 \( 1 - 8.26T + 61T^{2} \)
67 \( 1 + 5.19T + 67T^{2} \)
71 \( 1 + 10.1T + 71T^{2} \)
73 \( 1 - 14.4T + 73T^{2} \)
79 \( 1 - 5.92T + 79T^{2} \)
83 \( 1 - 16.6T + 83T^{2} \)
89 \( 1 - 3.92T + 89T^{2} \)
97 \( 1 - 17.1T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.983393638329352776948390823111, −7.88259923770659831535443333040, −6.99688805945246289905831484142, −6.48653844734527045112358021653, −5.57697346970628539897524518216, −4.97491738302514296442542307338, −4.02340333180061077855155384203, −3.49628878613053952275137333029, −1.88897408435967492974056121666, −1.17707155491389899811605176996, 1.17707155491389899811605176996, 1.88897408435967492974056121666, 3.49628878613053952275137333029, 4.02340333180061077855155384203, 4.97491738302514296442542307338, 5.57697346970628539897524518216, 6.48653844734527045112358021653, 6.99688805945246289905831484142, 7.88259923770659831535443333040, 8.983393638329352776948390823111

Graph of the $Z$-function along the critical line