Properties

Label 2-2850-1.1-c1-0-45
Degree $2$
Conductor $2850$
Sign $-1$
Analytic cond. $22.7573$
Root an. cond. $4.77046$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 6-s − 8-s + 9-s − 4·11-s + 12-s + 4·13-s + 16-s − 6·17-s − 18-s − 19-s + 4·22-s − 24-s − 4·26-s + 27-s − 2·29-s − 32-s − 4·33-s + 6·34-s + 36-s + 4·37-s + 38-s + 4·39-s − 12·41-s − 6·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 1.20·11-s + 0.288·12-s + 1.10·13-s + 1/4·16-s − 1.45·17-s − 0.235·18-s − 0.229·19-s + 0.852·22-s − 0.204·24-s − 0.784·26-s + 0.192·27-s − 0.371·29-s − 0.176·32-s − 0.696·33-s + 1.02·34-s + 1/6·36-s + 0.657·37-s + 0.162·38-s + 0.640·39-s − 1.87·41-s − 0.914·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(22.7573\)
Root analytic conductor: \(4.77046\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 \)
19 \( 1 + T \)
good7 \( 1 + p T^{2} \)
11 \( 1 + 4 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
17 \( 1 + 6 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 4 T + p T^{2} \)
41 \( 1 + 12 T + p T^{2} \)
43 \( 1 + 6 T + p T^{2} \)
47 \( 1 + p T^{2} \)
53 \( 1 - 14 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 4 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 8 T + p T^{2} \)
79 \( 1 + 8 T + p T^{2} \)
83 \( 1 + 12 T + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 - 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.476436746654235442316290282700, −7.900013935762179774135988802550, −7.00034238848896644633339370068, −6.35464316636008234486207761930, −5.37040663084008674926727251196, −4.38171405237765230161352358718, −3.36875425082195307584132862105, −2.48339574450153997622074091080, −1.58016455206581811988513488794, 0, 1.58016455206581811988513488794, 2.48339574450153997622074091080, 3.36875425082195307584132862105, 4.38171405237765230161352358718, 5.37040663084008674926727251196, 6.35464316636008234486207761930, 7.00034238848896644633339370068, 7.900013935762179774135988802550, 8.476436746654235442316290282700

Graph of the $Z$-function along the critical line