Properties

Label 2-288-8.3-c10-0-19
Degree $2$
Conductor $288$
Sign $1$
Analytic cond. $182.982$
Root an. cond. $13.5271$
Motivic weight $10$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 9.74e4·11-s − 8.23e5·17-s − 3.35e6·19-s + 9.76e6·25-s + 3.77e7·41-s − 2.14e8·43-s + 2.82e8·49-s + 9.21e8·59-s − 1.81e9·67-s − 1.60e9·73-s + 9.60e7·83-s + 1.11e10·89-s − 9.87e9·97-s + 2.74e10·107-s − 2.88e10·113-s + ⋯
L(s)  = 1  − 0.604·11-s − 0.580·17-s − 1.35·19-s + 25-s + 0.326·41-s − 1.45·43-s + 49-s + 1.28·59-s − 1.34·67-s − 0.774·73-s + 0.0243·83-s + 1.99·89-s − 1.14·97-s + 1.96·107-s − 1.56·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(288\)    =    \(2^{5} \cdot 3^{2}\)
Sign: $1$
Analytic conductor: \(182.982\)
Root analytic conductor: \(13.5271\)
Motivic weight: \(10\)
Rational: yes
Arithmetic: yes
Character: $\chi_{288} (271, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 288,\ (\ :5),\ 1)\)

Particular Values

\(L(\frac{11}{2})\) \(\approx\) \(1.539752908\)
\(L(\frac12)\) \(\approx\) \(1.539752908\)
\(L(6)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
7 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
11 \( 1 + 97426 T + p^{10} T^{2} \)
13 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
17 \( 1 + 823682 T + p^{10} T^{2} \)
19 \( 1 + 3353726 T + p^{10} T^{2} \)
23 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
29 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
31 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
37 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
41 \( 1 - 37778926 T + p^{10} T^{2} \)
43 \( 1 + 214485614 T + p^{10} T^{2} \)
47 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
53 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
59 \( 1 - 921043598 T + p^{10} T^{2} \)
61 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
67 \( 1 + 1813708382 T + p^{10} T^{2} \)
71 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
73 \( 1 + 1605781582 T + p^{10} T^{2} \)
79 \( ( 1 - p^{5} T )( 1 + p^{5} T ) \)
83 \( 1 - 96051518 T + p^{10} T^{2} \)
89 \( 1 - 11116019374 T + p^{10} T^{2} \)
97 \( 1 + 9872978014 T + p^{10} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.23174917817097704132387200810, −8.997642362541336893120637068858, −8.284923892782079449622615556105, −7.14465774716899679712754706727, −6.24676004658103149080287814027, −5.09517477600305482506258284604, −4.14799805436231887604603874332, −2.87185188095309228767915767922, −1.88297659535103519488378485087, −0.51343917301733733145802683475, 0.51343917301733733145802683475, 1.88297659535103519488378485087, 2.87185188095309228767915767922, 4.14799805436231887604603874332, 5.09517477600305482506258284604, 6.24676004658103149080287814027, 7.14465774716899679712754706727, 8.284923892782079449622615556105, 8.997642362541336893120637068858, 10.23174917817097704132387200810

Graph of the $Z$-function along the critical line