L(s) = 1 | − 9.74e4·11-s − 8.23e5·17-s − 3.35e6·19-s + 9.76e6·25-s + 3.77e7·41-s − 2.14e8·43-s + 2.82e8·49-s + 9.21e8·59-s − 1.81e9·67-s − 1.60e9·73-s + 9.60e7·83-s + 1.11e10·89-s − 9.87e9·97-s + 2.74e10·107-s − 2.88e10·113-s + ⋯ |
L(s) = 1 | − 0.604·11-s − 0.580·17-s − 1.35·19-s + 25-s + 0.326·41-s − 1.45·43-s + 49-s + 1.28·59-s − 1.34·67-s − 0.774·73-s + 0.0243·83-s + 1.99·89-s − 1.14·97-s + 1.96·107-s − 1.56·113-s + ⋯ |
Λ(s)=(=(288s/2ΓC(s)L(s)Λ(11−s)
Λ(s)=(=(288s/2ΓC(s+5)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
288
= 25⋅32
|
Sign: |
1
|
Analytic conductor: |
182.982 |
Root analytic conductor: |
13.5271 |
Motivic weight: |
10 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ288(271,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 288, ( :5), 1)
|
Particular Values
L(211) |
≈ |
1.539752908 |
L(21) |
≈ |
1.539752908 |
L(6) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | (1−p5T)(1+p5T) |
| 7 | (1−p5T)(1+p5T) |
| 11 | 1+97426T+p10T2 |
| 13 | (1−p5T)(1+p5T) |
| 17 | 1+823682T+p10T2 |
| 19 | 1+3353726T+p10T2 |
| 23 | (1−p5T)(1+p5T) |
| 29 | (1−p5T)(1+p5T) |
| 31 | (1−p5T)(1+p5T) |
| 37 | (1−p5T)(1+p5T) |
| 41 | 1−37778926T+p10T2 |
| 43 | 1+214485614T+p10T2 |
| 47 | (1−p5T)(1+p5T) |
| 53 | (1−p5T)(1+p5T) |
| 59 | 1−921043598T+p10T2 |
| 61 | (1−p5T)(1+p5T) |
| 67 | 1+1813708382T+p10T2 |
| 71 | (1−p5T)(1+p5T) |
| 73 | 1+1605781582T+p10T2 |
| 79 | (1−p5T)(1+p5T) |
| 83 | 1−96051518T+p10T2 |
| 89 | 1−11116019374T+p10T2 |
| 97 | 1+9872978014T+p10T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.23174917817097704132387200810, −8.997642362541336893120637068858, −8.284923892782079449622615556105, −7.14465774716899679712754706727, −6.24676004658103149080287814027, −5.09517477600305482506258284604, −4.14799805436231887604603874332, −2.87185188095309228767915767922, −1.88297659535103519488378485087, −0.51343917301733733145802683475,
0.51343917301733733145802683475, 1.88297659535103519488378485087, 2.87185188095309228767915767922, 4.14799805436231887604603874332, 5.09517477600305482506258284604, 6.24676004658103149080287814027, 7.14465774716899679712754706727, 8.284923892782079449622615556105, 8.997642362541336893120637068858, 10.23174917817097704132387200810