Properties

Label 2-288-8.5-c3-0-12
Degree $2$
Conductor $288$
Sign $i$
Analytic cond. $16.9925$
Root an. cond. $4.12220$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 19.7i·5-s + 34·7-s − 5.65i·11-s − 267·25-s − 223. i·29-s + 70·31-s − 673. i·35-s + 813·49-s − 579. i·53-s − 112.·55-s + 554. i·59-s − 322·73-s − 192. i·77-s − 1.37e3·79-s − 1.22e3i·83-s + ⋯
L(s)  = 1  − 1.77i·5-s + 1.83·7-s − 0.155i·11-s − 2.13·25-s − 1.43i·29-s + 0.405·31-s − 3.25i·35-s + 2.37·49-s − 1.50i·53-s − 0.274·55-s + 1.22i·59-s − 0.516·73-s − 0.284i·77-s − 1.95·79-s − 1.62i·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 288 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(288\)    =    \(2^{5} \cdot 3^{2}\)
Sign: $i$
Analytic conductor: \(16.9925\)
Root analytic conductor: \(4.12220\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{288} (145, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 288,\ (\ :3/2),\ i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.108919687\)
\(L(\frac12)\) \(\approx\) \(2.108919687\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 19.7iT - 125T^{2} \)
7 \( 1 - 34T + 343T^{2} \)
11 \( 1 + 5.65iT - 1.33e3T^{2} \)
13 \( 1 - 2.19e3T^{2} \)
17 \( 1 + 4.91e3T^{2} \)
19 \( 1 - 6.85e3T^{2} \)
23 \( 1 + 1.21e4T^{2} \)
29 \( 1 + 223. iT - 2.43e4T^{2} \)
31 \( 1 - 70T + 2.97e4T^{2} \)
37 \( 1 - 5.06e4T^{2} \)
41 \( 1 + 6.89e4T^{2} \)
43 \( 1 - 7.95e4T^{2} \)
47 \( 1 + 1.03e5T^{2} \)
53 \( 1 + 579. iT - 1.48e5T^{2} \)
59 \( 1 - 554. iT - 2.05e5T^{2} \)
61 \( 1 - 2.26e5T^{2} \)
67 \( 1 - 3.00e5T^{2} \)
71 \( 1 + 3.57e5T^{2} \)
73 \( 1 + 322T + 3.89e5T^{2} \)
79 \( 1 + 1.37e3T + 4.93e5T^{2} \)
83 \( 1 + 1.22e3iT - 5.71e5T^{2} \)
89 \( 1 + 7.04e5T^{2} \)
97 \( 1 + 574T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.48214944191593294086476533915, −10.15296807908926188882202869298, −8.955815583917076791416776789525, −8.334164412457794528064257586476, −7.63005488804058618439352639941, −5.79052724918491123696966831234, −4.89951563441063662155692358808, −4.23736571867318702157920557289, −1.93407725571111384367408329568, −0.854692854043478836273477347845, 1.73220427893793231135780452322, 2.97176518867559875544422242109, 4.38150302547969145180981064832, 5.62391519078560818375936434318, 6.89675995251773808252489858093, 7.60638010169990584021963497024, 8.573577037459673877182630969198, 10.00044265947340884484848528676, 10.93236559115647659812227445442, 11.24228682408501507032598225570

Graph of the $Z$-function along the critical line