L(s) = 1 | − 19.7i·5-s + 34·7-s − 5.65i·11-s − 267·25-s − 223. i·29-s + 70·31-s − 673. i·35-s + 813·49-s − 579. i·53-s − 112.·55-s + 554. i·59-s − 322·73-s − 192. i·77-s − 1.37e3·79-s − 1.22e3i·83-s + ⋯ |
L(s) = 1 | − 1.77i·5-s + 1.83·7-s − 0.155i·11-s − 2.13·25-s − 1.43i·29-s + 0.405·31-s − 3.25i·35-s + 2.37·49-s − 1.50i·53-s − 0.274·55-s + 1.22i·59-s − 0.516·73-s − 0.284i·77-s − 1.95·79-s − 1.62i·83-s + ⋯ |
Λ(s)=(=(288s/2ΓC(s)L(s)iΛ(4−s)
Λ(s)=(=(288s/2ΓC(s+3/2)L(s)iΛ(1−s)
Degree: |
2 |
Conductor: |
288
= 25⋅32
|
Sign: |
i
|
Analytic conductor: |
16.9925 |
Root analytic conductor: |
4.12220 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ288(145,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 288, ( :3/2), i)
|
Particular Values
L(2) |
≈ |
2.108919687 |
L(21) |
≈ |
2.108919687 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+19.7iT−125T2 |
| 7 | 1−34T+343T2 |
| 11 | 1+5.65iT−1.33e3T2 |
| 13 | 1−2.19e3T2 |
| 17 | 1+4.91e3T2 |
| 19 | 1−6.85e3T2 |
| 23 | 1+1.21e4T2 |
| 29 | 1+223.iT−2.43e4T2 |
| 31 | 1−70T+2.97e4T2 |
| 37 | 1−5.06e4T2 |
| 41 | 1+6.89e4T2 |
| 43 | 1−7.95e4T2 |
| 47 | 1+1.03e5T2 |
| 53 | 1+579.iT−1.48e5T2 |
| 59 | 1−554.iT−2.05e5T2 |
| 61 | 1−2.26e5T2 |
| 67 | 1−3.00e5T2 |
| 71 | 1+3.57e5T2 |
| 73 | 1+322T+3.89e5T2 |
| 79 | 1+1.37e3T+4.93e5T2 |
| 83 | 1+1.22e3iT−5.71e5T2 |
| 89 | 1+7.04e5T2 |
| 97 | 1+574T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.48214944191593294086476533915, −10.15296807908926188882202869298, −8.955815583917076791416776789525, −8.334164412457794528064257586476, −7.63005488804058618439352639941, −5.79052724918491123696966831234, −4.89951563441063662155692358808, −4.23736571867318702157920557289, −1.93407725571111384367408329568, −0.854692854043478836273477347845,
1.73220427893793231135780452322, 2.97176518867559875544422242109, 4.38150302547969145180981064832, 5.62391519078560818375936434318, 6.89675995251773808252489858093, 7.60638010169990584021963497024, 8.573577037459673877182630969198, 10.00044265947340884484848528676, 10.93236559115647659812227445442, 11.24228682408501507032598225570