Properties

Label 2-2880-4.3-c2-0-65
Degree $2$
Conductor $2880$
Sign $i$
Analytic cond. $78.4743$
Root an. cond. $8.85857$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.23·5-s + 10.1i·7-s − 14.4i·11-s − 11.5·13-s + 18.9·17-s − 12i·19-s − 17.5i·23-s + 5.00·25-s + 8.83·29-s − 0.583i·31-s + 22.7i·35-s − 32.4·37-s − 71.3·41-s + 4.65i·43-s + 22.5i·47-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.45i·7-s − 1.31i·11-s − 0.886·13-s + 1.11·17-s − 0.631i·19-s − 0.765i·23-s + 0.200·25-s + 0.304·29-s − 0.0188i·31-s + 0.650i·35-s − 0.877·37-s − 1.73·41-s + 0.108i·43-s + 0.479i·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2880 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2880\)    =    \(2^{6} \cdot 3^{2} \cdot 5\)
Sign: $i$
Analytic conductor: \(78.4743\)
Root analytic conductor: \(8.85857\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{2880} (2431, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2880,\ (\ :1),\ i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.376507265\)
\(L(\frac12)\) \(\approx\) \(1.376507265\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 2.23T \)
good7 \( 1 - 10.1iT - 49T^{2} \)
11 \( 1 + 14.4iT - 121T^{2} \)
13 \( 1 + 11.5T + 169T^{2} \)
17 \( 1 - 18.9T + 289T^{2} \)
19 \( 1 + 12iT - 361T^{2} \)
23 \( 1 + 17.5iT - 529T^{2} \)
29 \( 1 - 8.83T + 841T^{2} \)
31 \( 1 + 0.583iT - 961T^{2} \)
37 \( 1 + 32.4T + 1.36e3T^{2} \)
41 \( 1 + 71.3T + 1.68e3T^{2} \)
43 \( 1 - 4.65iT - 1.84e3T^{2} \)
47 \( 1 - 22.5iT - 2.20e3T^{2} \)
53 \( 1 - 63.3T + 2.80e3T^{2} \)
59 \( 1 + 30.6iT - 3.48e3T^{2} \)
61 \( 1 + 65.1T + 3.72e3T^{2} \)
67 \( 1 + 92.2iT - 4.48e3T^{2} \)
71 \( 1 + 41.7iT - 5.04e3T^{2} \)
73 \( 1 + 136.T + 5.32e3T^{2} \)
79 \( 1 - 81.1iT - 6.24e3T^{2} \)
83 \( 1 + 86.5iT - 6.88e3T^{2} \)
89 \( 1 - 30T + 7.92e3T^{2} \)
97 \( 1 - 119.T + 9.40e3T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.633278859699991766334333267785, −7.77940626918198880246201862086, −6.75818082173818434800161497820, −5.98492732506333217125146088584, −5.41826957169619673233762253611, −4.74575524564694784305615760567, −3.27681263008390109319308627779, −2.75341390025117576139904833695, −1.72940667944930734573500459277, −0.31732520039900472555541712361, 1.13463929813264346313486635923, 1.98231756731461471763614562058, 3.24415497636741171820031022944, 4.07855961333512989684150550285, 4.89232313935445178910325003664, 5.60513370487786505120344875815, 6.77122004767835678121866621341, 7.29341373704611994419154985049, 7.75866602233643866132774378235, 8.829554142162266872386644221708

Graph of the $Z$-function along the critical line