L(s) = 1 | + (−1.12 − 1.40i)2-s + (−0.0990 − 0.433i)3-s + (−0.277 + 1.21i)4-s + (0.222 + 0.279i)5-s + (−0.500 + 0.626i)6-s + (0.900 + 3.94i)7-s + (−1.22 + 0.588i)8-s + (2.52 − 1.21i)9-s + (0.143 − 0.626i)10-s + (−2.62 − 1.26i)11-s + 0.554·12-s + (−4.67 − 2.25i)13-s + (4.54 − 5.70i)14-s + (0.0990 − 0.124i)15-s + (4.44 + 2.14i)16-s + 1.10·17-s + ⋯ |
L(s) = 1 | + (−0.794 − 0.996i)2-s + (−0.0571 − 0.250i)3-s + (−0.138 + 0.607i)4-s + (0.0995 + 0.124i)5-s + (−0.204 + 0.255i)6-s + (0.340 + 1.49i)7-s + (−0.432 + 0.208i)8-s + (0.841 − 0.405i)9-s + (0.0452 − 0.198i)10-s + (−0.791 − 0.380i)11-s + 0.160·12-s + (−1.29 − 0.624i)13-s + (1.21 − 1.52i)14-s + (0.0255 − 0.0320i)15-s + (1.11 + 0.535i)16-s + 0.269·17-s + ⋯ |
Λ(s)=(=(29s/2ΓC(s)L(s)(0.357+0.934i)Λ(2−s)
Λ(s)=(=(29s/2ΓC(s+1/2)L(s)(0.357+0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
29
|
Sign: |
0.357+0.934i
|
Analytic conductor: |
0.231566 |
Root analytic conductor: |
0.481213 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ29(24,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 29, ( :1/2), 0.357+0.934i)
|
Particular Values
L(1) |
≈ |
0.411375−0.283092i |
L(21) |
≈ |
0.411375−0.283092i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 29 | 1+(−4.38−3.12i)T |
good | 2 | 1+(1.12+1.40i)T+(−0.445+1.94i)T2 |
| 3 | 1+(0.0990+0.433i)T+(−2.70+1.30i)T2 |
| 5 | 1+(−0.222−0.279i)T+(−1.11+4.87i)T2 |
| 7 | 1+(−0.900−3.94i)T+(−6.30+3.03i)T2 |
| 11 | 1+(2.62+1.26i)T+(6.85+8.60i)T2 |
| 13 | 1+(4.67+2.25i)T+(8.10+10.1i)T2 |
| 17 | 1−1.10T+17T2 |
| 19 | 1+(0.455−1.99i)T+(−17.1−8.24i)T2 |
| 23 | 1+(2.57−3.23i)T+(−5.11−22.4i)T2 |
| 31 | 1+(3.96+4.97i)T+(−6.89+30.2i)T2 |
| 37 | 1+(−2.62+1.26i)T+(23.0−28.9i)T2 |
| 41 | 1−0.396T+41T2 |
| 43 | 1+(−3.57+4.48i)T+(−9.56−41.9i)T2 |
| 47 | 1+(−7.02−3.38i)T+(29.3+36.7i)T2 |
| 53 | 1+(2.71+3.40i)T+(−11.7+51.6i)T2 |
| 59 | 1+9.10T+59T2 |
| 61 | 1+(−1.34−5.89i)T+(−54.9+26.4i)T2 |
| 67 | 1+(0.337−0.162i)T+(41.7−52.3i)T2 |
| 71 | 1+(−10.2−4.94i)T+(44.2+55.5i)T2 |
| 73 | 1+(5.57−6.99i)T+(−16.2−71.1i)T2 |
| 79 | 1+(−0.535+0.257i)T+(49.2−61.7i)T2 |
| 83 | 1+(−2.09+9.19i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−0.887−1.11i)T+(−19.8+86.7i)T2 |
| 97 | 1+(3.50−15.3i)T+(−87.3−42.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−17.62016045812302062496678613487, −15.71774688132796024959834704821, −14.68656156434386290435533914760, −12.59967987249435458310029097238, −11.97719977952906570989708688884, −10.45055346583592329462401095693, −9.389528532047503245348854437306, −7.965079999948813456966409270612, −5.66325346560503472403248174041, −2.46259427346092974642579421634,
4.67898505343392185417733475953, 7.03706179140409979728308016066, 7.75962509752452597228196744040, 9.596757290493155621182311957349, 10.57112998500381496376355919585, 12.60491504219486423836120456389, 14.07884477605949240212508926179, 15.36853698529461451713548474764, 16.51348763886378539153465335735, 17.12766126523671246419827101119