L(s) = 1 | + i·2-s − 2.81i·3-s − 4-s + (−1.63 − 1.52i)5-s + 2.81·6-s + 0.647i·7-s − i·8-s − 4.91·9-s + (1.52 − 1.63i)10-s − 3.05·11-s + 2.81i·12-s + 0.606i·13-s − 0.647·14-s + (−4.29 + 4.59i)15-s + 16-s − 2.27i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.62i·3-s − 0.5·4-s + (−0.729 − 0.683i)5-s + 1.14·6-s + 0.244i·7-s − 0.353i·8-s − 1.63·9-s + (0.483 − 0.516i)10-s − 0.921·11-s + 0.811i·12-s + 0.168i·13-s − 0.173·14-s + (−1.11 + 1.18i)15-s + 0.250·16-s − 0.551i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.683 + 0.729i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 290 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.683 + 0.729i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.280506 - 0.647104i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.280506 - 0.647104i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - iT \) |
| 5 | \( 1 + (1.63 + 1.52i)T \) |
| 29 | \( 1 + T \) |
good | 3 | \( 1 + 2.81iT - 3T^{2} \) |
| 7 | \( 1 - 0.647iT - 7T^{2} \) |
| 11 | \( 1 + 3.05T + 11T^{2} \) |
| 13 | \( 1 - 0.606iT - 13T^{2} \) |
| 17 | \( 1 + 2.27iT - 17T^{2} \) |
| 19 | \( 1 + 3.91T + 19T^{2} \) |
| 23 | \( 1 + 8.36iT - 23T^{2} \) |
| 31 | \( 1 - 4.40T + 31T^{2} \) |
| 37 | \( 1 + 4.92iT - 37T^{2} \) |
| 41 | \( 1 - 9.74T + 41T^{2} \) |
| 43 | \( 1 + 1.30iT - 43T^{2} \) |
| 47 | \( 1 + 5.18iT - 47T^{2} \) |
| 53 | \( 1 - 2.11iT - 53T^{2} \) |
| 59 | \( 1 - 11.9T + 59T^{2} \) |
| 61 | \( 1 + 12.9T + 61T^{2} \) |
| 67 | \( 1 + 12.7iT - 67T^{2} \) |
| 71 | \( 1 + 6.62T + 71T^{2} \) |
| 73 | \( 1 - 14.9iT - 73T^{2} \) |
| 79 | \( 1 - 1.68T + 79T^{2} \) |
| 83 | \( 1 + 11.5iT - 83T^{2} \) |
| 89 | \( 1 + 1.58T + 89T^{2} \) |
| 97 | \( 1 - 17.7iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.88194826539944770432666298754, −10.66297493969649816608852068641, −8.993045758232649597556043414053, −8.269184778599947585684831978241, −7.58307063872002838859823413274, −6.71315529618514205484033352683, −5.67101497756650538580301598858, −4.44446040658721308294122866010, −2.45936741652918426026068729313, −0.51740938965075097582979354074,
2.82767496822649744901696565273, 3.80151973940088265798531708972, 4.60853068282530423878700509070, 5.84288546204461390627691453966, 7.58846765967267509232173264744, 8.571241161373884556453383403485, 9.704617712353802040676177855729, 10.42520506684118839390343270737, 10.95286080965143623233923825342, 11.72275589461541830797216924002