Properties

Label 2-2912-1.1-c1-0-61
Degree $2$
Conductor $2912$
Sign $1$
Analytic cond. $23.2524$
Root an. cond. $4.82207$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.87·3-s + 4.22·5-s + 7-s + 5.26·9-s + 4.61·11-s − 13-s + 12.1·15-s − 7.82·17-s − 2.22·19-s + 2.87·21-s − 2.77·23-s + 12.8·25-s + 6.52·27-s − 5.74·29-s − 5.89·31-s + 13.2·33-s + 4.22·35-s + 9.18·37-s − 2.87·39-s + 3.40·41-s − 4.75·43-s + 22.2·45-s − 2.62·47-s + 49-s − 22.5·51-s − 11.8·53-s + 19.5·55-s + ⋯
L(s)  = 1  + 1.66·3-s + 1.89·5-s + 0.377·7-s + 1.75·9-s + 1.39·11-s − 0.277·13-s + 3.13·15-s − 1.89·17-s − 0.511·19-s + 0.627·21-s − 0.578·23-s + 2.57·25-s + 1.25·27-s − 1.06·29-s − 1.05·31-s + 2.31·33-s + 0.714·35-s + 1.50·37-s − 0.460·39-s + 0.531·41-s − 0.725·43-s + 3.32·45-s − 0.382·47-s + 0.142·49-s − 3.15·51-s − 1.62·53-s + 2.63·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2912\)    =    \(2^{5} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(23.2524\)
Root analytic conductor: \(4.82207\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2912,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.032518013\)
\(L(\frac12)\) \(\approx\) \(5.032518013\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 + T \)
good3 \( 1 - 2.87T + 3T^{2} \)
5 \( 1 - 4.22T + 5T^{2} \)
11 \( 1 - 4.61T + 11T^{2} \)
17 \( 1 + 7.82T + 17T^{2} \)
19 \( 1 + 2.22T + 19T^{2} \)
23 \( 1 + 2.77T + 23T^{2} \)
29 \( 1 + 5.74T + 29T^{2} \)
31 \( 1 + 5.89T + 31T^{2} \)
37 \( 1 - 9.18T + 37T^{2} \)
41 \( 1 - 3.40T + 41T^{2} \)
43 \( 1 + 4.75T + 43T^{2} \)
47 \( 1 + 2.62T + 47T^{2} \)
53 \( 1 + 11.8T + 53T^{2} \)
59 \( 1 - 7.35T + 59T^{2} \)
61 \( 1 + 2.84T + 61T^{2} \)
67 \( 1 + 12.1T + 67T^{2} \)
71 \( 1 - 5.46T + 71T^{2} \)
73 \( 1 - 8.11T + 73T^{2} \)
79 \( 1 + 8.58T + 79T^{2} \)
83 \( 1 + 14.0T + 83T^{2} \)
89 \( 1 + 0.944T + 89T^{2} \)
97 \( 1 - 15.7T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.935903672170805549591067986298, −8.306032452687063850588893226308, −7.23125668033818263186055937387, −6.54558630773253553685070671982, −5.87634656471150928764545450082, −4.66007841498056768830918564638, −3.97694157390528262039652150834, −2.81755332949796436347385657169, −1.98738017849708977890729334533, −1.66011703031324062654119157597, 1.66011703031324062654119157597, 1.98738017849708977890729334533, 2.81755332949796436347385657169, 3.97694157390528262039652150834, 4.66007841498056768830918564638, 5.87634656471150928764545450082, 6.54558630773253553685070671982, 7.23125668033818263186055937387, 8.306032452687063850588893226308, 8.935903672170805549591067986298

Graph of the $Z$-function along the critical line