Properties

Label 2-2912-8.5-c1-0-66
Degree $2$
Conductor $2912$
Sign $-0.862 - 0.506i$
Analytic cond. $23.2524$
Root an. cond. $4.82207$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.472i·3-s − 4.35i·5-s − 7-s + 2.77·9-s + 5.41i·11-s + i·13-s + 2.05·15-s − 6.30·17-s − 2.90i·19-s − 0.472i·21-s − 1.16·23-s − 13.9·25-s + 2.72i·27-s − 0.400i·29-s − 8.74·31-s + ⋯
L(s)  = 1  + 0.272i·3-s − 1.94i·5-s − 0.377·7-s + 0.925·9-s + 1.63i·11-s + 0.277i·13-s + 0.530·15-s − 1.52·17-s − 0.667i·19-s − 0.103i·21-s − 0.243·23-s − 2.78·25-s + 0.524i·27-s − 0.0743i·29-s − 1.57·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.862 - 0.506i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.862 - 0.506i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2912\)    =    \(2^{5} \cdot 7 \cdot 13\)
Sign: $-0.862 - 0.506i$
Analytic conductor: \(23.2524\)
Root analytic conductor: \(4.82207\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2912} (1457, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2912,\ (\ :1/2),\ -0.862 - 0.506i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.002203826989\)
\(L(\frac12)\) \(\approx\) \(0.002203826989\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + T \)
13 \( 1 - iT \)
good3 \( 1 - 0.472iT - 3T^{2} \)
5 \( 1 + 4.35iT - 5T^{2} \)
11 \( 1 - 5.41iT - 11T^{2} \)
17 \( 1 + 6.30T + 17T^{2} \)
19 \( 1 + 2.90iT - 19T^{2} \)
23 \( 1 + 1.16T + 23T^{2} \)
29 \( 1 + 0.400iT - 29T^{2} \)
31 \( 1 + 8.74T + 31T^{2} \)
37 \( 1 + 0.159iT - 37T^{2} \)
41 \( 1 + 0.297T + 41T^{2} \)
43 \( 1 + 3.74iT - 43T^{2} \)
47 \( 1 - 3.08T + 47T^{2} \)
53 \( 1 + 2.19iT - 53T^{2} \)
59 \( 1 + 3.99iT - 59T^{2} \)
61 \( 1 - 3.08iT - 61T^{2} \)
67 \( 1 - 13.4iT - 67T^{2} \)
71 \( 1 + 12.0T + 71T^{2} \)
73 \( 1 + 14.9T + 73T^{2} \)
79 \( 1 + 10.8T + 79T^{2} \)
83 \( 1 + 2.84iT - 83T^{2} \)
89 \( 1 + 12.0T + 89T^{2} \)
97 \( 1 - 4.12T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.719103927469400288205062595872, −7.39313597823845682780885172931, −7.07102285869187107092093735045, −5.86102958066222630259729570763, −4.93180287015349469717003747823, −4.43451556914871068669078678486, −3.98804000837667942780285880408, −2.18174841863803327477496877901, −1.47843203669419098124179076763, −0.00065503696009288793228497953, 1.79804135033068477839675878481, 2.81332584298963757463106720827, 3.47728787768572387861921673264, 4.24276730086943180814439758862, 5.82474590793397048600924061379, 6.17957672312248829394085505253, 6.99195601426640412387788815115, 7.44021449927532061962706821188, 8.340609816399705072243888459236, 9.246891867358132007103951608448

Graph of the $Z$-function along the critical line