L(s) = 1 | + 2.79i·3-s − 3.17i·5-s − 7-s − 4.83·9-s + 1.99i·11-s + i·13-s + 8.89·15-s + 7.81·17-s − 3.34i·19-s − 2.79i·21-s − 7.14·23-s − 5.10·25-s − 5.14i·27-s − 7.25i·29-s + 0.189·31-s + ⋯ |
L(s) = 1 | + 1.61i·3-s − 1.42i·5-s − 0.377·7-s − 1.61·9-s + 0.602i·11-s + 0.277i·13-s + 2.29·15-s + 1.89·17-s − 0.766i·19-s − 0.610i·21-s − 1.48·23-s − 1.02·25-s − 0.989i·27-s − 1.34i·29-s + 0.0340·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.943 + 0.332i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.943 + 0.332i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.405148039\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.405148039\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + T \) |
| 13 | \( 1 - iT \) |
good | 3 | \( 1 - 2.79iT - 3T^{2} \) |
| 5 | \( 1 + 3.17iT - 5T^{2} \) |
| 11 | \( 1 - 1.99iT - 11T^{2} \) |
| 17 | \( 1 - 7.81T + 17T^{2} \) |
| 19 | \( 1 + 3.34iT - 19T^{2} \) |
| 23 | \( 1 + 7.14T + 23T^{2} \) |
| 29 | \( 1 + 7.25iT - 29T^{2} \) |
| 31 | \( 1 - 0.189T + 31T^{2} \) |
| 37 | \( 1 + 8.57iT - 37T^{2} \) |
| 41 | \( 1 + 4.87T + 41T^{2} \) |
| 43 | \( 1 + 7.67iT - 43T^{2} \) |
| 47 | \( 1 + 2.25T + 47T^{2} \) |
| 53 | \( 1 - 7.38iT - 53T^{2} \) |
| 59 | \( 1 + 12.8iT - 59T^{2} \) |
| 61 | \( 1 - 12.6iT - 61T^{2} \) |
| 67 | \( 1 + 3.75iT - 67T^{2} \) |
| 71 | \( 1 - 10.6T + 71T^{2} \) |
| 73 | \( 1 - 11.7T + 73T^{2} \) |
| 79 | \( 1 - 5.64T + 79T^{2} \) |
| 83 | \( 1 + 10.6iT - 83T^{2} \) |
| 89 | \( 1 - 0.376T + 89T^{2} \) |
| 97 | \( 1 + 3.35T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.917016790770070364823789219519, −8.219409304767566518682380710582, −7.42759874521520306987898386321, −6.05068006178123661708293325470, −5.41123929208765754731643104882, −4.77213806634131827891909132748, −4.07700190476107138873203445323, −3.45446475607022449876186949257, −2.07305579736156247907775574374, −0.50834994216504563802127793184,
1.07164692751590625601421948987, 2.09740033219750236279730706675, 3.17421284866820870098911588968, 3.47279995544011647482348203922, 5.33185966146316360322952181733, 6.12296945746848297615113098483, 6.52690684045948292519486512213, 7.25359795707368849954042857412, 8.000478690613024368301293155656, 8.267582547724249082458742255773