Properties

Label 2-2912-56.27-c1-0-56
Degree $2$
Conductor $2912$
Sign $0.943 + 0.330i$
Analytic cond. $23.2524$
Root an. cond. $4.82207$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.140i·3-s − 0.986·5-s + (1.39 + 2.24i)7-s + 2.98·9-s + 1.55·11-s − 13-s − 0.138i·15-s − 4.36i·17-s − 7.69i·19-s + (−0.315 + 0.195i)21-s + 2.65i·23-s − 4.02·25-s + 0.838i·27-s − 5.33i·29-s + 9.27·31-s + ⋯
L(s)  = 1  + 0.0809i·3-s − 0.441·5-s + (0.527 + 0.849i)7-s + 0.993·9-s + 0.469·11-s − 0.277·13-s − 0.0357i·15-s − 1.05i·17-s − 1.76i·19-s + (−0.0687 + 0.0426i)21-s + 0.553i·23-s − 0.805·25-s + 0.161i·27-s − 0.990i·29-s + 1.66·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.943 + 0.330i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.943 + 0.330i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2912\)    =    \(2^{5} \cdot 7 \cdot 13\)
Sign: $0.943 + 0.330i$
Analytic conductor: \(23.2524\)
Root analytic conductor: \(4.82207\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2912} (2575, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2912,\ (\ :1/2),\ 0.943 + 0.330i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.948830332\)
\(L(\frac12)\) \(\approx\) \(1.948830332\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-1.39 - 2.24i)T \)
13 \( 1 + T \)
good3 \( 1 - 0.140iT - 3T^{2} \)
5 \( 1 + 0.986T + 5T^{2} \)
11 \( 1 - 1.55T + 11T^{2} \)
17 \( 1 + 4.36iT - 17T^{2} \)
19 \( 1 + 7.69iT - 19T^{2} \)
23 \( 1 - 2.65iT - 23T^{2} \)
29 \( 1 + 5.33iT - 29T^{2} \)
31 \( 1 - 9.27T + 31T^{2} \)
37 \( 1 - 0.0671iT - 37T^{2} \)
41 \( 1 + 5.51iT - 41T^{2} \)
43 \( 1 - 5.43T + 43T^{2} \)
47 \( 1 - 6.75T + 47T^{2} \)
53 \( 1 + 3.62iT - 53T^{2} \)
59 \( 1 - 4.10iT - 59T^{2} \)
61 \( 1 + 8.11T + 61T^{2} \)
67 \( 1 + 5.12T + 67T^{2} \)
71 \( 1 + 1.96iT - 71T^{2} \)
73 \( 1 + 3.52iT - 73T^{2} \)
79 \( 1 - 9.12iT - 79T^{2} \)
83 \( 1 - 5.07iT - 83T^{2} \)
89 \( 1 + 1.10iT - 89T^{2} \)
97 \( 1 + 10.5iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.872764297801745477083695945822, −7.84032440388028073022853358911, −7.32484907645527323048499165806, −6.53705938834258554530183933855, −5.56950529454786295577902045425, −4.67711236333805844994474109428, −4.22180924611395727601971369331, −2.93825194962063517187282940376, −2.10946796467066870553843334573, −0.75577810604450930668372878592, 1.08674555531254075839587542896, 1.86616678032695407600936092493, 3.40053309509168118495418080517, 4.18569383017620739021283090147, 4.57879293305985273060110527012, 5.88388114662524865889568812252, 6.56830972217486046047763170565, 7.48758329242183290148749959963, 7.893519699600688329418594606028, 8.617942963484875739181480902905

Graph of the $Z$-function along the critical line