Properties

Label 2-2912-56.27-c1-0-31
Degree $2$
Conductor $2912$
Sign $-0.604 - 0.796i$
Analytic cond. $23.2524$
Root an. cond. $4.82207$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.48i·3-s + 1.02·5-s + (1.70 + 2.02i)7-s + 0.784·9-s − 0.608·11-s − 13-s + 1.53i·15-s + 0.526i·17-s + 1.94i·19-s + (−3.00 + 2.54i)21-s − 0.0153i·23-s − 3.93·25-s + 5.63i·27-s + 4.64i·29-s − 4.57·31-s + ⋯
L(s)  = 1  + 0.859i·3-s + 0.460·5-s + (0.645 + 0.763i)7-s + 0.261·9-s − 0.183·11-s − 0.277·13-s + 0.395i·15-s + 0.127i·17-s + 0.446i·19-s + (−0.656 + 0.554i)21-s − 0.00319i·23-s − 0.787·25-s + 1.08i·27-s + 0.862i·29-s − 0.821·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.604 - 0.796i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2912 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.604 - 0.796i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2912\)    =    \(2^{5} \cdot 7 \cdot 13\)
Sign: $-0.604 - 0.796i$
Analytic conductor: \(23.2524\)
Root analytic conductor: \(4.82207\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{2912} (2575, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 2912,\ (\ :1/2),\ -0.604 - 0.796i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.929326878\)
\(L(\frac12)\) \(\approx\) \(1.929326878\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-1.70 - 2.02i)T \)
13 \( 1 + T \)
good3 \( 1 - 1.48iT - 3T^{2} \)
5 \( 1 - 1.02T + 5T^{2} \)
11 \( 1 + 0.608T + 11T^{2} \)
17 \( 1 - 0.526iT - 17T^{2} \)
19 \( 1 - 1.94iT - 19T^{2} \)
23 \( 1 + 0.0153iT - 23T^{2} \)
29 \( 1 - 4.64iT - 29T^{2} \)
31 \( 1 + 4.57T + 31T^{2} \)
37 \( 1 + 2.15iT - 37T^{2} \)
41 \( 1 - 6.24iT - 41T^{2} \)
43 \( 1 - 3.29T + 43T^{2} \)
47 \( 1 - 2.60T + 47T^{2} \)
53 \( 1 + 1.16iT - 53T^{2} \)
59 \( 1 - 0.783iT - 59T^{2} \)
61 \( 1 - 5.32T + 61T^{2} \)
67 \( 1 - 4.18T + 67T^{2} \)
71 \( 1 + 14.9iT - 71T^{2} \)
73 \( 1 - 9.18iT - 73T^{2} \)
79 \( 1 - 9.29iT - 79T^{2} \)
83 \( 1 - 1.45iT - 83T^{2} \)
89 \( 1 - 12.0iT - 89T^{2} \)
97 \( 1 - 8.46iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.265653042876221432270738307644, −8.352343854195057029027565978546, −7.64939568746445699049065649183, −6.71382235039557909659357382286, −5.67824795986575103284917241484, −5.23435725746594349280335231034, −4.38695385655357670035262744298, −3.55475893414556212043393166682, −2.42019722376618314655498350663, −1.51129202551398363131461236545, 0.60270205181872971312496994229, 1.70444000751775205031346427497, 2.41579444571388446737010271363, 3.78833086860576249488293118381, 4.58436089083833889934419581951, 5.49561107688205573639043161066, 6.31814449966417773989287142389, 7.19503094514381079236296920395, 7.54101973443787636478039912774, 8.308755404185861477451730108528

Graph of the $Z$-function along the critical line