L(s) = 1 | − i·3-s + (−0.866 − 0.5i)4-s − 9-s + (1.36 + 0.366i)11-s + (−0.5 + 0.866i)12-s + (0.866 + 0.5i)13-s + (0.499 + 0.866i)16-s + 17-s + (1 + i)19-s + (−0.5 + 0.866i)23-s + i·27-s + (0.5 + 0.866i)29-s + (0.366 − 1.36i)33-s + (0.866 + 0.5i)36-s + (−1 − i)37-s + ⋯ |
L(s) = 1 | − i·3-s + (−0.866 − 0.5i)4-s − 9-s + (1.36 + 0.366i)11-s + (−0.5 + 0.866i)12-s + (0.866 + 0.5i)13-s + (0.499 + 0.866i)16-s + 17-s + (1 + i)19-s + (−0.5 + 0.866i)23-s + i·27-s + (0.5 + 0.866i)29-s + (0.366 − 1.36i)33-s + (0.866 + 0.5i)36-s + (−1 − i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 + 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.762 + 0.646i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.129453641\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.129453641\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + iT \) |
| 5 | \( 1 \) |
| 13 | \( 1 + (-0.866 - 0.5i)T \) |
good | 2 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-1.36 - 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-1 - i)T + iT^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (1 + i)T + iT^{2} \) |
| 41 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (-0.366 + 1.36i)T + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 61 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 + (-1 - i)T + iT^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 83 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 + (1 - i)T - iT^{2} \) |
| 97 | \( 1 + (0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.719989455286021665875358173769, −8.270915538638889674429434392683, −7.24745123610897443832897989100, −6.64214967000613559347537010253, −5.71338460009820615678024097106, −5.31050494964648009303292952165, −3.91184080035300860464203298610, −3.46203559030012178610594380138, −1.68806623900742459623268777849, −1.21413358916088766339001458756,
0.955603273068434059797208846090, 2.93438544226094252365164458585, 3.54934751232010378990465677202, 4.22434730652825650726640144747, 5.03428052509972175811105669990, 5.79565306346995531070190823979, 6.64835563505084242887576364462, 7.81204052690610122830718116888, 8.509534481811730060147800601507, 8.977035973343150003201617384256