L(s) = 1 | + (0.0712 − 0.139i)2-s + (0.573 + 0.789i)4-s + (0.972 + 0.233i)5-s + (0.306 − 0.0484i)8-s + (0.101 − 0.119i)10-s + (−0.993 + 0.322i)11-s + (0.891 − 0.453i)13-s + (−0.286 + 0.881i)16-s + (0.373 + 0.901i)20-s + (−0.0256 + 0.161i)22-s + (0.891 + 0.453i)25-s − 0.156i·26-s + (0.322 + 0.322i)32-s + (0.309 + 0.0243i)40-s + (−1.44 − 0.469i)41-s + ⋯ |
L(s) = 1 | + (0.0712 − 0.139i)2-s + (0.573 + 0.789i)4-s + (0.972 + 0.233i)5-s + (0.306 − 0.0484i)8-s + (0.101 − 0.119i)10-s + (−0.993 + 0.322i)11-s + (0.891 − 0.453i)13-s + (−0.286 + 0.881i)16-s + (0.373 + 0.901i)20-s + (−0.0256 + 0.161i)22-s + (0.891 + 0.453i)25-s − 0.156i·26-s + (0.322 + 0.322i)32-s + (0.309 + 0.0243i)40-s + (−1.44 − 0.469i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.770 - 0.637i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.750044969\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.750044969\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 + (-0.972 - 0.233i)T \) |
| 13 | \( 1 + (-0.891 + 0.453i)T \) |
good | 2 | \( 1 + (-0.0712 + 0.139i)T + (-0.587 - 0.809i)T^{2} \) |
| 7 | \( 1 + iT^{2} \) |
| 11 | \( 1 + (0.993 - 0.322i)T + (0.809 - 0.587i)T^{2} \) |
| 17 | \( 1 + (0.951 - 0.309i)T^{2} \) |
| 19 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 + (-0.587 - 0.809i)T^{2} \) |
| 29 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 37 | \( 1 + (0.587 - 0.809i)T^{2} \) |
| 41 | \( 1 + (1.44 + 0.469i)T + (0.809 + 0.587i)T^{2} \) |
| 43 | \( 1 + (-0.642 - 0.642i)T + iT^{2} \) |
| 47 | \( 1 + (-1.50 - 0.237i)T + (0.951 + 0.309i)T^{2} \) |
| 53 | \( 1 + (0.951 + 0.309i)T^{2} \) |
| 59 | \( 1 + (0.144 - 0.444i)T + (-0.809 - 0.587i)T^{2} \) |
| 61 | \( 1 + (-0.0966 - 0.297i)T + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 71 | \( 1 + (1.00 + 1.37i)T + (-0.309 + 0.951i)T^{2} \) |
| 73 | \( 1 + (0.587 + 0.809i)T^{2} \) |
| 79 | \( 1 + (-0.831 - 1.14i)T + (-0.309 + 0.951i)T^{2} \) |
| 83 | \( 1 + (1.96 - 0.311i)T + (0.951 - 0.309i)T^{2} \) |
| 89 | \( 1 + (0.570 + 1.75i)T + (-0.809 + 0.587i)T^{2} \) |
| 97 | \( 1 + (0.951 + 0.309i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.896259083504711396970115808333, −8.281627452447312546695085482677, −7.46331489067866362053950706558, −6.81780271997909887084830564001, −5.96868772777055664947121978148, −5.31559176714666844707879766736, −4.21576919754547112066326864603, −3.18782240357684974110494484529, −2.53768838531156109435436596191, −1.58951643339579238638750269397,
1.17479516411555596817246655180, 2.12060258513175913225124931465, 2.97598624901969284368521850766, 4.32106957144146882200490058795, 5.31211440284782229678208657608, 5.73455335535716244376243110238, 6.46593417909225265992439108449, 7.16004840701057637740841494821, 8.158404099365142527193369304792, 8.925635493732790380083345735132