L(s) = 1 | + 2·7-s − 16-s − 2·19-s + 2·31-s − 2·37-s + 2·49-s + 2·67-s + 2·73-s − 2·97-s − 2·109-s − 2·112-s + 127-s + 131-s − 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
L(s) = 1 | + 2·7-s − 16-s − 2·19-s + 2·31-s − 2·37-s + 2·49-s + 2·67-s + 2·73-s − 2·97-s − 2·109-s − 2·112-s + 127-s + 131-s − 4·133-s + 137-s + 139-s + 149-s + 151-s + 157-s + 163-s + 167-s − 169-s + 173-s + 179-s + 181-s + 191-s + 193-s + ⋯ |
Λ(s)=(=(8555625s/2ΓC(s)2L(s)Λ(1−s)
Λ(s)=(=(8555625s/2ΓC(s)2L(s)Λ(1−s)
Degree: |
4 |
Conductor: |
8555625
= 34⋅54⋅132
|
Sign: |
1
|
Analytic conductor: |
2.13091 |
Root analytic conductor: |
1.20820 |
Motivic weight: |
0 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
Trivial
|
Primitive: |
no
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(4, 8555625, ( :0,0), 1)
|
Particular Values
L(21) |
≈ |
1.578109028 |
L(21) |
≈ |
1.578109028 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1
L(s)=p∏ j=1∏4(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.961648947526123855276460415419, −8.578463707715024107279476466777, −8.321117685088286588720852072272, −8.096598058912461166318883789972, −7.924785992434291661239084190691, −7.05267160860198830843268447143, −6.94351350092379117722643286356, −6.56959945734339281681644154544, −6.18498535589391991572459290462, −5.49558565105280841295918485178, −5.24270426378048592321858880200, −4.85374351795357824825049766707, −4.37794120111384212584934433152, −4.24394926466181307307903669687, −3.72720249732470050320271435260, −2.96332388599962322690076830622, −2.45039883942702676141526581431, −1.87717345643110840097775915967, −1.78382365759962944775249701589, −0.797753375799117961488007663994,
0.797753375799117961488007663994, 1.78382365759962944775249701589, 1.87717345643110840097775915967, 2.45039883942702676141526581431, 2.96332388599962322690076830622, 3.72720249732470050320271435260, 4.24394926466181307307903669687, 4.37794120111384212584934433152, 4.85374351795357824825049766707, 5.24270426378048592321858880200, 5.49558565105280841295918485178, 6.18498535589391991572459290462, 6.56959945734339281681644154544, 6.94351350092379117722643286356, 7.05267160860198830843268447143, 7.924785992434291661239084190691, 8.096598058912461166318883789972, 8.321117685088286588720852072272, 8.578463707715024107279476466777, 8.961648947526123855276460415419