L(s) = 1 | − i·4-s + (−1 + i)7-s + 13-s − 16-s + (1 − i)19-s + (1 + i)28-s + (1 − i)31-s + (1 − i)37-s − i·49-s − i·52-s + i·64-s + (1 + i)67-s + (1 − i)73-s + (−1 − i)76-s + (−1 + i)91-s + ⋯ |
L(s) = 1 | − i·4-s + (−1 + i)7-s + 13-s − 16-s + (1 − i)19-s + (1 + i)28-s + (1 − i)31-s + (1 − i)37-s − i·49-s − i·52-s + i·64-s + (1 + i)67-s + (1 − i)73-s + (−1 − i)76-s + (−1 + i)91-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.687 + 0.726i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.687 + 0.726i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.134353950\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.134353950\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 5 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 2 | \( 1 + iT^{2} \) |
| 7 | \( 1 + (1 - i)T - iT^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-1 + i)T - iT^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (-1 + i)T - iT^{2} \) |
| 37 | \( 1 + (-1 + i)T - iT^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + T^{2} \) |
| 67 | \( 1 + (-1 - i)T + iT^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + (-1 + i)T - iT^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 + (1 + i)T + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.097407592431904067470331168552, −8.249313731272776710654606122550, −7.15485647259275612211134353752, −6.34361901833019919199888573346, −5.88636541586108532440335442379, −5.18744245549190367212731792590, −4.16427502390397744213224719821, −3.04201429419698191488151207029, −2.24686146542404139963555246619, −0.859533339486763757477469956919,
1.17424830026051623143488192957, 2.78208793556568982001997120457, 3.54135330926877451265211800089, 4.00413991492576385201963831895, 5.08973662254021009056302118022, 6.32056528747818534711733054607, 6.70561597173879844154223885900, 7.65393889534254582285729320616, 8.129456183186555261499199370028, 8.985993131654618376910504969253