L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (1.5 + 2.59i)5-s + 0.999·6-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (−1.5 + 2.59i)10-s + (−1.5 + 2.59i)11-s + (0.499 + 0.866i)12-s + 4·13-s + 3·15-s + (−0.5 − 0.866i)16-s + (0.499 − 0.866i)18-s + (−2 − 3.46i)19-s − 3·20-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.670 + 1.16i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.474 + 0.821i)10-s + (−0.452 + 0.783i)11-s + (0.144 + 0.249i)12-s + 1.10·13-s + 0.774·15-s + (−0.125 − 0.216i)16-s + (0.117 − 0.204i)18-s + (−0.458 − 0.794i)19-s − 0.670·20-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(0.386−0.922i)Λ(2−s)
Λ(s)=(=(294s/2ΓC(s+1/2)L(s)(0.386−0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
0.386−0.922i
|
Analytic conductor: |
2.34760 |
Root analytic conductor: |
1.53218 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :1/2), 0.386−0.922i)
|
Particular Values
L(1) |
≈ |
1.47441+0.980753i |
L(21) |
≈ |
1.47441+0.980753i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.5−0.866i)T |
| 3 | 1+(−0.5+0.866i)T |
| 7 | 1 |
good | 5 | 1+(−1.5−2.59i)T+(−2.5+4.33i)T2 |
| 11 | 1+(1.5−2.59i)T+(−5.5−9.52i)T2 |
| 13 | 1−4T+13T2 |
| 17 | 1+(−8.5−14.7i)T2 |
| 19 | 1+(2+3.46i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−11.5+19.9i)T2 |
| 29 | 1−9T+29T2 |
| 31 | 1+(0.5−0.866i)T+(−15.5−26.8i)T2 |
| 37 | 1+(4+6.92i)T+(−18.5+32.0i)T2 |
| 41 | 1+41T2 |
| 43 | 1+10T+43T2 |
| 47 | 1+(3+5.19i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1.5+2.59i)T+(−26.5−45.8i)T2 |
| 59 | 1+(−1.5+2.59i)T+(−29.5−51.0i)T2 |
| 61 | 1+(5+8.66i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−5+8.66i)T+(−33.5−58.0i)T2 |
| 71 | 1+6T+71T2 |
| 73 | 1+(−1+1.73i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−0.5−0.866i)T+(−39.5+68.4i)T2 |
| 83 | 1−9T+83T2 |
| 89 | 1+(−3−5.19i)T+(−44.5+77.0i)T2 |
| 97 | 1−T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.14814796756962491231152969332, −10.94663304372568654803690152265, −10.12995107750951951828227135541, −8.927862783067826846508157032946, −7.924628609479120144057344214047, −6.77290324066127448857640223373, −6.41161157954552699571805603448, −5.03695989968728934664911248661, −3.44572890759647428492004949300, −2.23391888154599838654479472433,
1.40264919238267836223954523794, 3.08924076079537029196784210471, 4.35612756688499510285107816568, 5.35613875150297397452357254668, 6.24589082920275981337306364604, 8.355759837900032899939204398645, 8.702230901876412996209469040661, 9.882133240093658466959944347700, 10.55647746576914540557831981482, 11.62728483000516633398829236736