L(s) = 1 | + (0.5 + 0.866i)2-s + (0.5 − 0.866i)3-s + (−0.499 + 0.866i)4-s + (1.5 + 2.59i)5-s + 0.999·6-s − 0.999·8-s + (−0.499 − 0.866i)9-s + (−1.5 + 2.59i)10-s + (−1.5 + 2.59i)11-s + (0.499 + 0.866i)12-s + 4·13-s + 3·15-s + (−0.5 − 0.866i)16-s + (0.499 − 0.866i)18-s + (−2 − 3.46i)19-s − 3·20-s + ⋯ |
L(s) = 1 | + (0.353 + 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (0.670 + 1.16i)5-s + 0.408·6-s − 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.474 + 0.821i)10-s + (−0.452 + 0.783i)11-s + (0.144 + 0.249i)12-s + 1.10·13-s + 0.774·15-s + (−0.125 − 0.216i)16-s + (0.117 − 0.204i)18-s + (−0.458 − 0.794i)19-s − 0.670·20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.386 - 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.47441 + 0.980753i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.47441 + 0.980753i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (-1.5 - 2.59i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (1.5 - 2.59i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2 + 3.46i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 9T + 29T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (4 + 6.92i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + 10T + 43T^{2} \) |
| 47 | \( 1 + (3 + 5.19i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.5 + 2.59i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-1.5 + 2.59i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (5 + 8.66i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-5 + 8.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 6T + 71T^{2} \) |
| 73 | \( 1 + (-1 + 1.73i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.5 - 0.866i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 9T + 83T^{2} \) |
| 89 | \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.14814796756962491231152969332, −10.94663304372568654803690152265, −10.12995107750951951828227135541, −8.927862783067826846508157032946, −7.924628609479120144057344214047, −6.77290324066127448857640223373, −6.41161157954552699571805603448, −5.03695989968728934664911248661, −3.44572890759647428492004949300, −2.23391888154599838654479472433,
1.40264919238267836223954523794, 3.08924076079537029196784210471, 4.35612756688499510285107816568, 5.35613875150297397452357254668, 6.24589082920275981337306364604, 8.355759837900032899939204398645, 8.702230901876412996209469040661, 9.882133240093658466959944347700, 10.55647746576914540557831981482, 11.62728483000516633398829236736