L(s) = 1 | + (−2 − 3.46i)2-s + (4.5 − 7.79i)3-s + (−7.99 + 13.8i)4-s + (−3 − 5.19i)5-s − 36·6-s + 63.9·8-s + (−40.5 − 70.1i)9-s + (−12 + 20.7i)10-s + (333 − 576. i)11-s + (72 + 124. i)12-s + 559·13-s − 54·15-s + (−128 − 221. i)16-s + (−870 + 1.50e3i)17-s + (−162 + 280. i)18-s + (578.5 + 1.00e3i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.0536 − 0.0929i)5-s − 0.408·6-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.0379 + 0.0657i)10-s + (0.829 − 1.43i)11-s + (0.144 + 0.249i)12-s + 0.917·13-s − 0.0619·15-s + (−0.125 − 0.216i)16-s + (−0.730 + 1.26i)17-s + (−0.117 + 0.204i)18-s + (0.367 + 0.636i)19-s + ⋯ |
Λ(s)=(=(294s/2ΓC(s)L(s)(−0.386+0.922i)Λ(6−s)
Λ(s)=(=(294s/2ΓC(s+5/2)L(s)(−0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
294
= 2⋅3⋅72
|
Sign: |
−0.386+0.922i
|
Analytic conductor: |
47.1528 |
Root analytic conductor: |
6.86679 |
Motivic weight: |
5 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ294(67,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 294, ( :5/2), −0.386+0.922i)
|
Particular Values
L(3) |
≈ |
1.932179518 |
L(21) |
≈ |
1.932179518 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(2+3.46i)T |
| 3 | 1+(−4.5+7.79i)T |
| 7 | 1 |
good | 5 | 1+(3+5.19i)T+(−1.56e3+2.70e3i)T2 |
| 11 | 1+(−333+576.i)T+(−8.05e4−1.39e5i)T2 |
| 13 | 1−559T+3.71e5T2 |
| 17 | 1+(870−1.50e3i)T+(−7.09e5−1.22e6i)T2 |
| 19 | 1+(−578.5−1.00e3i)T+(−1.23e6+2.14e6i)T2 |
| 23 | 1+(−1.73e3−3.00e3i)T+(−3.21e6+5.57e6i)T2 |
| 29 | 1−3.37e3T+2.05e7T2 |
| 31 | 1+(−3.14e3+5.44e3i)T+(−1.43e7−2.47e7i)T2 |
| 37 | 1+(1.56e3+2.71e3i)T+(−3.46e7+6.00e7i)T2 |
| 41 | 1−4.86e3T+1.15e8T2 |
| 43 | 1+1.14e4T+1.47e8T2 |
| 47 | 1+(−1.15e3−2.00e3i)T+(−1.14e8+1.98e8i)T2 |
| 53 | 1+(−1.41e4+2.45e4i)T+(−2.09e8−3.62e8i)T2 |
| 59 | 1+(−1.02e4+1.77e4i)T+(−3.57e8−6.19e8i)T2 |
| 61 | 1+(2.31e3+4.00e3i)T+(−4.22e8+7.31e8i)T2 |
| 67 | 1+(−9.37e3+1.62e4i)T+(−6.75e8−1.16e9i)T2 |
| 71 | 1+3.82e4T+1.80e9T2 |
| 73 | 1+(−3.52e4+6.11e4i)T+(−1.03e9−1.79e9i)T2 |
| 79 | 1+(−3.11e4−5.39e4i)T+(−1.53e9+2.66e9i)T2 |
| 83 | 1+7.98e4T+3.93e9T2 |
| 89 | 1+(9.06e3+1.56e4i)T+(−2.79e9+4.83e9i)T2 |
| 97 | 1+1.24e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.85368577207167651578553297938, −9.621875835566487876493018268320, −8.539866121027255912603647154679, −8.236451994783072162007565001063, −6.70050611261365736480099378246, −5.82678148160099584910215572988, −4.02709157117137369075997123664, −3.18479114723959621418810255129, −1.66136784998079231227713008756, −0.69570274335452160640611942480,
1.11591644617717784554228576472, 2.75980179333151237766430056604, 4.31195164346514827120201283176, 5.06349750084131179402539717566, 6.66340240983807495978096858029, 7.16229498861651554853591421634, 8.616489108274838051287344050981, 9.155231460146695749733615012799, 10.08322346189933902031858603593, 11.03567748981070995046271770462