L(s) = 1 | + (−2 − 3.46i)2-s + (4.5 − 7.79i)3-s + (−7.99 + 13.8i)4-s + (−3 − 5.19i)5-s − 36·6-s + 63.9·8-s + (−40.5 − 70.1i)9-s + (−12 + 20.7i)10-s + (333 − 576. i)11-s + (72 + 124. i)12-s + 559·13-s − 54·15-s + (−128 − 221. i)16-s + (−870 + 1.50e3i)17-s + (−162 + 280. i)18-s + (578.5 + 1.00e3i)19-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 − 0.499i)3-s + (−0.249 + 0.433i)4-s + (−0.0536 − 0.0929i)5-s − 0.408·6-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (−0.0379 + 0.0657i)10-s + (0.829 − 1.43i)11-s + (0.144 + 0.249i)12-s + 0.917·13-s − 0.0619·15-s + (−0.125 − 0.216i)16-s + (−0.730 + 1.26i)17-s + (−0.117 + 0.204i)18-s + (0.367 + 0.636i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(1.932179518\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.932179518\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 + 3.46i)T \) |
| 3 | \( 1 + (-4.5 + 7.79i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (3 + 5.19i)T + (-1.56e3 + 2.70e3i)T^{2} \) |
| 11 | \( 1 + (-333 + 576. i)T + (-8.05e4 - 1.39e5i)T^{2} \) |
| 13 | \( 1 - 559T + 3.71e5T^{2} \) |
| 17 | \( 1 + (870 - 1.50e3i)T + (-7.09e5 - 1.22e6i)T^{2} \) |
| 19 | \( 1 + (-578.5 - 1.00e3i)T + (-1.23e6 + 2.14e6i)T^{2} \) |
| 23 | \( 1 + (-1.73e3 - 3.00e3i)T + (-3.21e6 + 5.57e6i)T^{2} \) |
| 29 | \( 1 - 3.37e3T + 2.05e7T^{2} \) |
| 31 | \( 1 + (-3.14e3 + 5.44e3i)T + (-1.43e7 - 2.47e7i)T^{2} \) |
| 37 | \( 1 + (1.56e3 + 2.71e3i)T + (-3.46e7 + 6.00e7i)T^{2} \) |
| 41 | \( 1 - 4.86e3T + 1.15e8T^{2} \) |
| 43 | \( 1 + 1.14e4T + 1.47e8T^{2} \) |
| 47 | \( 1 + (-1.15e3 - 2.00e3i)T + (-1.14e8 + 1.98e8i)T^{2} \) |
| 53 | \( 1 + (-1.41e4 + 2.45e4i)T + (-2.09e8 - 3.62e8i)T^{2} \) |
| 59 | \( 1 + (-1.02e4 + 1.77e4i)T + (-3.57e8 - 6.19e8i)T^{2} \) |
| 61 | \( 1 + (2.31e3 + 4.00e3i)T + (-4.22e8 + 7.31e8i)T^{2} \) |
| 67 | \( 1 + (-9.37e3 + 1.62e4i)T + (-6.75e8 - 1.16e9i)T^{2} \) |
| 71 | \( 1 + 3.82e4T + 1.80e9T^{2} \) |
| 73 | \( 1 + (-3.52e4 + 6.11e4i)T + (-1.03e9 - 1.79e9i)T^{2} \) |
| 79 | \( 1 + (-3.11e4 - 5.39e4i)T + (-1.53e9 + 2.66e9i)T^{2} \) |
| 83 | \( 1 + 7.98e4T + 3.93e9T^{2} \) |
| 89 | \( 1 + (9.06e3 + 1.56e4i)T + (-2.79e9 + 4.83e9i)T^{2} \) |
| 97 | \( 1 + 1.24e5T + 8.58e9T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.85368577207167651578553297938, −9.621875835566487876493018268320, −8.539866121027255912603647154679, −8.236451994783072162007565001063, −6.70050611261365736480099378246, −5.82678148160099584910215572988, −4.02709157117137369075997123664, −3.18479114723959621418810255129, −1.66136784998079231227713008756, −0.69570274335452160640611942480,
1.11591644617717784554228576472, 2.75980179333151237766430056604, 4.31195164346514827120201283176, 5.06349750084131179402539717566, 6.66340240983807495978096858029, 7.16229498861651554853591421634, 8.616489108274838051287344050981, 9.155231460146695749733615012799, 10.08322346189933902031858603593, 11.03567748981070995046271770462