Properties

Label 2-294-7.2-c7-0-27
Degree 22
Conductor 294294
Sign 0.6050.795i0.605 - 0.795i
Analytic cond. 91.841191.8411
Root an. cond. 9.583389.58338
Motivic weight 77
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4 + 6.92i)2-s + (−13.5 − 23.3i)3-s + (−31.9 − 55.4i)4-s + (−235 + 407. i)5-s + 216·6-s + 511.·8-s + (−364.5 + 631. i)9-s + (−1.87e3 − 3.25e3i)10-s + (3.63e3 + 6.29e3i)11-s + (−864. + 1.49e3i)12-s + 1.13e4·13-s + 1.26e4·15-s + (−2.04e3 + 3.54e3i)16-s + (−1.04e4 − 1.80e4i)17-s + (−2.91e3 − 5.05e3i)18-s + (6.84e3 − 1.18e4i)19-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.840 + 1.45i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.594 − 1.02i)10-s + (0.823 + 1.42i)11-s + (−0.144 + 0.249i)12-s + 1.43·13-s + 0.970·15-s + (−0.125 + 0.216i)16-s + (−0.514 − 0.891i)17-s + (−0.117 − 0.204i)18-s + (0.228 − 0.396i)19-s + ⋯

Functional equation

Λ(s)=(294s/2ΓC(s)L(s)=((0.6050.795i)Λ(8s)\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(8-s) \end{aligned}
Λ(s)=(294s/2ΓC(s+7/2)L(s)=((0.6050.795i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 294294    =    23722 \cdot 3 \cdot 7^{2}
Sign: 0.6050.795i0.605 - 0.795i
Analytic conductor: 91.841191.8411
Root analytic conductor: 9.583389.58338
Motivic weight: 77
Rational: no
Arithmetic: yes
Character: χ294(79,)\chi_{294} (79, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 294, ( :7/2), 0.6050.795i)(2,\ 294,\ (\ :7/2),\ 0.605 - 0.795i)

Particular Values

L(4)L(4) \approx 1.3649342331.364934233
L(12)L(\frac12) \approx 1.3649342331.364934233
L(92)L(\frac{9}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(46.92i)T 1 + (4 - 6.92i)T
3 1+(13.5+23.3i)T 1 + (13.5 + 23.3i)T
7 1 1
good5 1+(235407.i)T+(3.90e46.76e4i)T2 1 + (235 - 407. i)T + (-3.90e4 - 6.76e4i)T^{2}
11 1+(3.63e36.29e3i)T+(9.74e6+1.68e7i)T2 1 + (-3.63e3 - 6.29e3i)T + (-9.74e6 + 1.68e7i)T^{2}
13 11.13e4T+6.27e7T2 1 - 1.13e4T + 6.27e7T^{2}
17 1+(1.04e4+1.80e4i)T+(2.05e8+3.55e8i)T2 1 + (1.04e4 + 1.80e4i)T + (-2.05e8 + 3.55e8i)T^{2}
19 1+(6.84e3+1.18e4i)T+(4.46e87.74e8i)T2 1 + (-6.84e3 + 1.18e4i)T + (-4.46e8 - 7.74e8i)T^{2}
23 1+(2.33e4+4.04e4i)T+(1.70e92.94e9i)T2 1 + (-2.33e4 + 4.04e4i)T + (-1.70e9 - 2.94e9i)T^{2}
29 12.77e3T+1.72e10T2 1 - 2.77e3T + 1.72e10T^{2}
31 1+(5.61e39.72e3i)T+(1.37e10+2.38e10i)T2 1 + (-5.61e3 - 9.72e3i)T + (-1.37e10 + 2.38e10i)T^{2}
37 1+(1.19e5+2.07e5i)T+(4.74e108.22e10i)T2 1 + (-1.19e5 + 2.07e5i)T + (-4.74e10 - 8.22e10i)T^{2}
41 15.29e4T+1.94e11T2 1 - 5.29e4T + 1.94e11T^{2}
43 1+8.74e5T+2.71e11T2 1 + 8.74e5T + 2.71e11T^{2}
47 1+(2.25e5+3.90e5i)T+(2.53e114.38e11i)T2 1 + (-2.25e5 + 3.90e5i)T + (-2.53e11 - 4.38e11i)T^{2}
53 1+(9.71e51.68e6i)T+(5.87e11+1.01e12i)T2 1 + (-9.71e5 - 1.68e6i)T + (-5.87e11 + 1.01e12i)T^{2}
59 1+(7.81e5+1.35e6i)T+(1.24e12+2.15e12i)T2 1 + (7.81e5 + 1.35e6i)T + (-1.24e12 + 2.15e12i)T^{2}
61 1+(1.59e6+2.75e6i)T+(1.57e122.72e12i)T2 1 + (-1.59e6 + 2.75e6i)T + (-1.57e12 - 2.72e12i)T^{2}
67 1+(1.06e6+1.84e6i)T+(3.03e12+5.24e12i)T2 1 + (1.06e6 + 1.84e6i)T + (-3.03e12 + 5.24e12i)T^{2}
71 15.69e6T+9.09e12T2 1 - 5.69e6T + 9.09e12T^{2}
73 1+(1.12e61.95e6i)T+(5.52e12+9.56e12i)T2 1 + (-1.12e6 - 1.95e6i)T + (-5.52e12 + 9.56e12i)T^{2}
79 1+(6.64e41.15e5i)T+(9.60e121.66e13i)T2 1 + (6.64e4 - 1.15e5i)T + (-9.60e12 - 1.66e13i)T^{2}
83 16.95e6T+2.71e13T2 1 - 6.95e6T + 2.71e13T^{2}
89 1+(5.31e6+9.20e6i)T+(2.21e133.83e13i)T2 1 + (-5.31e6 + 9.20e6i)T + (-2.21e13 - 3.83e13i)T^{2}
97 12.40e6T+8.07e13T2 1 - 2.40e6T + 8.07e13T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.86006216706538622409188130178, −9.727562745139641598057234299112, −8.598333005048052201768003557655, −7.47500009446721796015196845769, −6.87135634342503276146475293179, −6.31425245324834374931841370402, −4.70136688283467577368310452884, −3.52466870744652224539634074109, −2.10390646114507674990508447111, −0.61270414574465112540363598177, 0.72262259556792063577564694109, 1.33770567363112869478181544509, 3.56318226180308977580435819603, 3.96039781209892456861945649901, 5.23744176279373040365720101496, 6.32474718318988183144196075391, 8.133622213881373387016241433677, 8.616944620973555812483758227212, 9.267063838157835864596982899938, 10.59142193972083044078893748685

Graph of the ZZ-function along the critical line