L(s) = 1 | + (−4 + 6.92i)2-s + (−13.5 − 23.3i)3-s + (−31.9 − 55.4i)4-s + (−235 + 407. i)5-s + 216·6-s + 511.·8-s + (−364.5 + 631. i)9-s + (−1.87e3 − 3.25e3i)10-s + (3.63e3 + 6.29e3i)11-s + (−864. + 1.49e3i)12-s + 1.13e4·13-s + 1.26e4·15-s + (−2.04e3 + 3.54e3i)16-s + (−1.04e4 − 1.80e4i)17-s + (−2.91e3 − 5.05e3i)18-s + (6.84e3 − 1.18e4i)19-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.288 − 0.499i)3-s + (−0.249 − 0.433i)4-s + (−0.840 + 1.45i)5-s + 0.408·6-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.594 − 1.02i)10-s + (0.823 + 1.42i)11-s + (−0.144 + 0.249i)12-s + 1.43·13-s + 0.970·15-s + (−0.125 + 0.216i)16-s + (−0.514 − 0.891i)17-s + (−0.117 − 0.204i)18-s + (0.228 − 0.396i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 294 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.605 - 0.795i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.364934233\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.364934233\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (4 - 6.92i)T \) |
| 3 | \( 1 + (13.5 + 23.3i)T \) |
| 7 | \( 1 \) |
good | 5 | \( 1 + (235 - 407. i)T + (-3.90e4 - 6.76e4i)T^{2} \) |
| 11 | \( 1 + (-3.63e3 - 6.29e3i)T + (-9.74e6 + 1.68e7i)T^{2} \) |
| 13 | \( 1 - 1.13e4T + 6.27e7T^{2} \) |
| 17 | \( 1 + (1.04e4 + 1.80e4i)T + (-2.05e8 + 3.55e8i)T^{2} \) |
| 19 | \( 1 + (-6.84e3 + 1.18e4i)T + (-4.46e8 - 7.74e8i)T^{2} \) |
| 23 | \( 1 + (-2.33e4 + 4.04e4i)T + (-1.70e9 - 2.94e9i)T^{2} \) |
| 29 | \( 1 - 2.77e3T + 1.72e10T^{2} \) |
| 31 | \( 1 + (-5.61e3 - 9.72e3i)T + (-1.37e10 + 2.38e10i)T^{2} \) |
| 37 | \( 1 + (-1.19e5 + 2.07e5i)T + (-4.74e10 - 8.22e10i)T^{2} \) |
| 41 | \( 1 - 5.29e4T + 1.94e11T^{2} \) |
| 43 | \( 1 + 8.74e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + (-2.25e5 + 3.90e5i)T + (-2.53e11 - 4.38e11i)T^{2} \) |
| 53 | \( 1 + (-9.71e5 - 1.68e6i)T + (-5.87e11 + 1.01e12i)T^{2} \) |
| 59 | \( 1 + (7.81e5 + 1.35e6i)T + (-1.24e12 + 2.15e12i)T^{2} \) |
| 61 | \( 1 + (-1.59e6 + 2.75e6i)T + (-1.57e12 - 2.72e12i)T^{2} \) |
| 67 | \( 1 + (1.06e6 + 1.84e6i)T + (-3.03e12 + 5.24e12i)T^{2} \) |
| 71 | \( 1 - 5.69e6T + 9.09e12T^{2} \) |
| 73 | \( 1 + (-1.12e6 - 1.95e6i)T + (-5.52e12 + 9.56e12i)T^{2} \) |
| 79 | \( 1 + (6.64e4 - 1.15e5i)T + (-9.60e12 - 1.66e13i)T^{2} \) |
| 83 | \( 1 - 6.95e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + (-5.31e6 + 9.20e6i)T + (-2.21e13 - 3.83e13i)T^{2} \) |
| 97 | \( 1 - 2.40e6T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.86006216706538622409188130178, −9.727562745139641598057234299112, −8.598333005048052201768003557655, −7.47500009446721796015196845769, −6.87135634342503276146475293179, −6.31425245324834374931841370402, −4.70136688283467577368310452884, −3.52466870744652224539634074109, −2.10390646114507674990508447111, −0.61270414574465112540363598177,
0.72262259556792063577564694109, 1.33770567363112869478181544509, 3.56318226180308977580435819603, 3.96039781209892456861945649901, 5.23744176279373040365720101496, 6.32474718318988183144196075391, 8.133622213881373387016241433677, 8.616944620973555812483758227212, 9.267063838157835864596982899938, 10.59142193972083044078893748685