L(s) = 1 | + (0.5 − 0.866i)3-s + (−0.5 − 0.866i)5-s + (−0.499 − 0.866i)9-s + (1 − 1.73i)11-s + 4·13-s − 0.999·15-s + (−1 + 1.73i)17-s + (−1 − 1.73i)19-s + (−2 − 3.46i)23-s + (−0.499 + 0.866i)25-s − 0.999·27-s + 6·29-s + (1 − 1.73i)31-s + (−0.999 − 1.73i)33-s + (−5 − 8.66i)37-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (−0.223 − 0.387i)5-s + (−0.166 − 0.288i)9-s + (0.301 − 0.522i)11-s + 1.10·13-s − 0.258·15-s + (−0.242 + 0.420i)17-s + (−0.229 − 0.397i)19-s + (−0.417 − 0.722i)23-s + (−0.0999 + 0.173i)25-s − 0.192·27-s + 1.11·29-s + (0.179 − 0.311i)31-s + (−0.174 − 0.301i)33-s + (−0.821 − 1.42i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.754155203\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.754155203\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (-1 + 1.73i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 + (1 - 1.73i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1 + 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (2 + 3.46i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 - 6T + 29T^{2} \) |
| 31 | \( 1 + (-1 + 1.73i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (5 + 8.66i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 10T + 41T^{2} \) |
| 43 | \( 1 - 12T + 43T^{2} \) |
| 47 | \( 1 + (-4 - 6.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-4 + 6.92i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1 - 1.73i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-6 + 10.3i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 10T + 71T^{2} \) |
| 73 | \( 1 + (2 - 3.46i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 12T + 83T^{2} \) |
| 89 | \( 1 + (1 + 1.73i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.655939034338345697155057699080, −7.907874656403813234861817784412, −6.97809132272929596079752408086, −6.26956590935373123519379768342, −5.62487466143993170523326065425, −4.43729587426430170656510290499, −3.77010574966112410097961211953, −2.76406401030701506625382780557, −1.64937687243616779230932029827, −0.56477112115496538302130946808,
1.34330332175008026168851722396, 2.54854771601251225415914081737, 3.50575859436075359254156725618, 4.13878536680193821875103740551, 5.03653109322354569477218550042, 5.97367861583938014292527882200, 6.76327145842183402637119278082, 7.46768965765711649883025369133, 8.498390417704503515117102502873, 8.757794150409406497292650805055