Properties

Label 2-2940-7.4-c1-0-22
Degree 22
Conductor 29402940
Sign 0.386+0.922i-0.386 + 0.922i
Analytic cond. 23.476023.4760
Root an. cond. 4.845204.84520
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 0.866i)3-s + (0.5 + 0.866i)5-s + (−0.499 − 0.866i)9-s + (3 − 5.19i)11-s + 0.999·15-s + (−3 + 5.19i)17-s + (−2 − 3.46i)19-s + (−3 − 5.19i)23-s + (−0.499 + 0.866i)25-s − 0.999·27-s − 2·29-s + (4 − 6.92i)31-s + (−3 − 5.19i)33-s + (1 + 1.73i)37-s + 10·41-s + ⋯
L(s)  = 1  + (0.288 − 0.499i)3-s + (0.223 + 0.387i)5-s + (−0.166 − 0.288i)9-s + (0.904 − 1.56i)11-s + 0.258·15-s + (−0.727 + 1.26i)17-s + (−0.458 − 0.794i)19-s + (−0.625 − 1.08i)23-s + (−0.0999 + 0.173i)25-s − 0.192·27-s − 0.371·29-s + (0.718 − 1.24i)31-s + (−0.522 − 0.904i)33-s + (0.164 + 0.284i)37-s + 1.56·41-s + ⋯

Functional equation

Λ(s)=(2940s/2ΓC(s)L(s)=((0.386+0.922i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(2940s/2ΓC(s+1/2)L(s)=((0.386+0.922i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 29402940    =    2235722^{2} \cdot 3 \cdot 5 \cdot 7^{2}
Sign: 0.386+0.922i-0.386 + 0.922i
Analytic conductor: 23.476023.4760
Root analytic conductor: 4.845204.84520
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ2940(361,)\chi_{2940} (361, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 2940, ( :1/2), 0.386+0.922i)(2,\ 2940,\ (\ :1/2),\ -0.386 + 0.922i)

Particular Values

L(1)L(1) \approx 1.6567292741.656729274
L(12)L(\frac12) \approx 1.6567292741.656729274
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+(0.5+0.866i)T 1 + (-0.5 + 0.866i)T
5 1+(0.50.866i)T 1 + (-0.5 - 0.866i)T
7 1 1
good11 1+(3+5.19i)T+(5.59.52i)T2 1 + (-3 + 5.19i)T + (-5.5 - 9.52i)T^{2}
13 1+13T2 1 + 13T^{2}
17 1+(35.19i)T+(8.514.7i)T2 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2}
19 1+(2+3.46i)T+(9.5+16.4i)T2 1 + (2 + 3.46i)T + (-9.5 + 16.4i)T^{2}
23 1+(3+5.19i)T+(11.5+19.9i)T2 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2}
29 1+2T+29T2 1 + 2T + 29T^{2}
31 1+(4+6.92i)T+(15.526.8i)T2 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2}
37 1+(11.73i)T+(18.5+32.0i)T2 1 + (-1 - 1.73i)T + (-18.5 + 32.0i)T^{2}
41 110T+41T2 1 - 10T + 41T^{2}
43 1+12T+43T2 1 + 12T + 43T^{2}
47 1+(4+6.92i)T+(23.5+40.7i)T2 1 + (4 + 6.92i)T + (-23.5 + 40.7i)T^{2}
53 1+(1+1.73i)T+(26.545.8i)T2 1 + (-1 + 1.73i)T + (-26.5 - 45.8i)T^{2}
59 1+(23.46i)T+(29.551.0i)T2 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2}
61 1+(46.92i)T+(30.5+52.8i)T2 1 + (-4 - 6.92i)T + (-30.5 + 52.8i)T^{2}
67 1+(8+13.8i)T+(33.558.0i)T2 1 + (-8 + 13.8i)T + (-33.5 - 58.0i)T^{2}
71 1+10T+71T2 1 + 10T + 71T^{2}
73 1+(36.563.2i)T2 1 + (-36.5 - 63.2i)T^{2}
79 1+(2+3.46i)T+(39.5+68.4i)T2 1 + (2 + 3.46i)T + (-39.5 + 68.4i)T^{2}
83 1+4T+83T2 1 + 4T + 83T^{2}
89 1+(35.19i)T+(44.5+77.0i)T2 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2}
97 1+8T+97T2 1 + 8T + 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.504434728989843170470079510706, −7.950478503056679010354974153725, −6.76177020598190411884028697671, −6.34613995757581238121560975027, −5.78520931394817769678313928809, −4.41606789876374360753715124613, −3.68016743556727274132541520267, −2.72008358530914539171878590415, −1.80934283219266697246836236981, −0.48951267692112829121555218951, 1.45977576982650446327585610934, 2.32727692416469673921520919281, 3.51734435118517038502527829839, 4.41520839068227377003037303970, 4.87767678198304522162706827984, 5.89489693253323683467159831430, 6.81817421777296804297086051078, 7.45168851608405605450068474839, 8.366147604341629586184438961040, 9.114010884581364167482178211225

Graph of the ZZ-function along the critical line