L(s) = 1 | + (0.5 − 0.866i)3-s + (0.5 + 0.866i)5-s + (−0.499 − 0.866i)9-s + (3 − 5.19i)11-s + 0.999·15-s + (−3 + 5.19i)17-s + (−2 − 3.46i)19-s + (−3 − 5.19i)23-s + (−0.499 + 0.866i)25-s − 0.999·27-s − 2·29-s + (4 − 6.92i)31-s + (−3 − 5.19i)33-s + (1 + 1.73i)37-s + 10·41-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (0.223 + 0.387i)5-s + (−0.166 − 0.288i)9-s + (0.904 − 1.56i)11-s + 0.258·15-s + (−0.727 + 1.26i)17-s + (−0.458 − 0.794i)19-s + (−0.625 − 1.08i)23-s + (−0.0999 + 0.173i)25-s − 0.192·27-s − 0.371·29-s + (0.718 − 1.24i)31-s + (−0.522 − 0.904i)33-s + (0.164 + 0.284i)37-s + 1.56·41-s + ⋯ |
Λ(s)=(=(2940s/2ΓC(s)L(s)(−0.386+0.922i)Λ(2−s)
Λ(s)=(=(2940s/2ΓC(s+1/2)L(s)(−0.386+0.922i)Λ(1−s)
Degree: |
2 |
Conductor: |
2940
= 22⋅3⋅5⋅72
|
Sign: |
−0.386+0.922i
|
Analytic conductor: |
23.4760 |
Root analytic conductor: |
4.84520 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2940(361,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2940, ( :1/2), −0.386+0.922i)
|
Particular Values
L(1) |
≈ |
1.656729274 |
L(21) |
≈ |
1.656729274 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5+0.866i)T |
| 5 | 1+(−0.5−0.866i)T |
| 7 | 1 |
good | 11 | 1+(−3+5.19i)T+(−5.5−9.52i)T2 |
| 13 | 1+13T2 |
| 17 | 1+(3−5.19i)T+(−8.5−14.7i)T2 |
| 19 | 1+(2+3.46i)T+(−9.5+16.4i)T2 |
| 23 | 1+(3+5.19i)T+(−11.5+19.9i)T2 |
| 29 | 1+2T+29T2 |
| 31 | 1+(−4+6.92i)T+(−15.5−26.8i)T2 |
| 37 | 1+(−1−1.73i)T+(−18.5+32.0i)T2 |
| 41 | 1−10T+41T2 |
| 43 | 1+12T+43T2 |
| 47 | 1+(4+6.92i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−1+1.73i)T+(−26.5−45.8i)T2 |
| 59 | 1+(2−3.46i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−4−6.92i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−8+13.8i)T+(−33.5−58.0i)T2 |
| 71 | 1+10T+71T2 |
| 73 | 1+(−36.5−63.2i)T2 |
| 79 | 1+(2+3.46i)T+(−39.5+68.4i)T2 |
| 83 | 1+4T+83T2 |
| 89 | 1+(−3−5.19i)T+(−44.5+77.0i)T2 |
| 97 | 1+8T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.504434728989843170470079510706, −7.950478503056679010354974153725, −6.76177020598190411884028697671, −6.34613995757581238121560975027, −5.78520931394817769678313928809, −4.41606789876374360753715124613, −3.68016743556727274132541520267, −2.72008358530914539171878590415, −1.80934283219266697246836236981, −0.48951267692112829121555218951,
1.45977576982650446327585610934, 2.32727692416469673921520919281, 3.51734435118517038502527829839, 4.41520839068227377003037303970, 4.87767678198304522162706827984, 5.89489693253323683467159831430, 6.81817421777296804297086051078, 7.45168851608405605450068474839, 8.366147604341629586184438961040, 9.114010884581364167482178211225