L(s) = 1 | + (0.5 − 0.866i)3-s + (0.5 + 0.866i)5-s + (−0.499 − 0.866i)9-s + (3 − 5.19i)11-s + 0.999·15-s + (−3 + 5.19i)17-s + (−2 − 3.46i)19-s + (−3 − 5.19i)23-s + (−0.499 + 0.866i)25-s − 0.999·27-s − 2·29-s + (4 − 6.92i)31-s + (−3 − 5.19i)33-s + (1 + 1.73i)37-s + 10·41-s + ⋯ |
L(s) = 1 | + (0.288 − 0.499i)3-s + (0.223 + 0.387i)5-s + (−0.166 − 0.288i)9-s + (0.904 − 1.56i)11-s + 0.258·15-s + (−0.727 + 1.26i)17-s + (−0.458 − 0.794i)19-s + (−0.625 − 1.08i)23-s + (−0.0999 + 0.173i)25-s − 0.192·27-s − 0.371·29-s + (0.718 − 1.24i)31-s + (−0.522 − 0.904i)33-s + (0.164 + 0.284i)37-s + 1.56·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2940 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.386 + 0.922i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.656729274\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.656729274\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 + 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 7 | \( 1 \) |
good | 11 | \( 1 + (-3 + 5.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 13T^{2} \) |
| 17 | \( 1 + (3 - 5.19i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2 + 3.46i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (3 + 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 2T + 29T^{2} \) |
| 31 | \( 1 + (-4 + 6.92i)T + (-15.5 - 26.8i)T^{2} \) |
| 37 | \( 1 + (-1 - 1.73i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 10T + 41T^{2} \) |
| 43 | \( 1 + 12T + 43T^{2} \) |
| 47 | \( 1 + (4 + 6.92i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1 + 1.73i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2 - 3.46i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-4 - 6.92i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-8 + 13.8i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 10T + 71T^{2} \) |
| 73 | \( 1 + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (2 + 3.46i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 4T + 83T^{2} \) |
| 89 | \( 1 + (-3 - 5.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 8T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.504434728989843170470079510706, −7.950478503056679010354974153725, −6.76177020598190411884028697671, −6.34613995757581238121560975027, −5.78520931394817769678313928809, −4.41606789876374360753715124613, −3.68016743556727274132541520267, −2.72008358530914539171878590415, −1.80934283219266697246836236981, −0.48951267692112829121555218951,
1.45977576982650446327585610934, 2.32727692416469673921520919281, 3.51734435118517038502527829839, 4.41520839068227377003037303970, 4.87767678198304522162706827984, 5.89489693253323683467159831430, 6.81817421777296804297086051078, 7.45168851608405605450068474839, 8.366147604341629586184438961040, 9.114010884581364167482178211225