L(s) = 1 | + (−0.261 − 0.453i)3-s + (1.19 + 2.07i)5-s + (−2.55 − 4.43i)7-s + (1.36 − 2.36i)9-s + 5.32·11-s + (1.22 + 2.12i)13-s + (0.626 − 1.08i)15-s + (0.5 − 0.866i)17-s + (0.435 + 0.753i)19-s + (−1.33 + 2.32i)21-s + 5.98·23-s + (−0.364 + 0.631i)25-s − 2.99·27-s − 5.07·29-s − 5.32·31-s + ⋯ |
L(s) = 1 | + (−0.151 − 0.261i)3-s + (0.535 + 0.927i)5-s + (−0.967 − 1.67i)7-s + (0.454 − 0.786i)9-s + 1.60·11-s + (0.340 + 0.589i)13-s + (0.161 − 0.280i)15-s + (0.121 − 0.210i)17-s + (0.0998 + 0.172i)19-s + (−0.292 + 0.506i)21-s + 1.24·23-s + (−0.0729 + 0.126i)25-s − 0.576·27-s − 0.942·29-s − 0.956·31-s + ⋯ |
Λ(s)=(=(296s/2ΓC(s)L(s)(0.825+0.564i)Λ(2−s)
Λ(s)=(=(296s/2ΓC(s+1/2)L(s)(0.825+0.564i)Λ(1−s)
Degree: |
2 |
Conductor: |
296
= 23⋅37
|
Sign: |
0.825+0.564i
|
Analytic conductor: |
2.36357 |
Root analytic conductor: |
1.53739 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ296(121,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 296, ( :1/2), 0.825+0.564i)
|
Particular Values
L(1) |
≈ |
1.28393−0.397174i |
L(21) |
≈ |
1.28393−0.397174i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+(−1.34+5.93i)T |
good | 3 | 1+(0.261+0.453i)T+(−1.5+2.59i)T2 |
| 5 | 1+(−1.19−2.07i)T+(−2.5+4.33i)T2 |
| 7 | 1+(2.55+4.43i)T+(−3.5+6.06i)T2 |
| 11 | 1−5.32T+11T2 |
| 13 | 1+(−1.22−2.12i)T+(−6.5+11.2i)T2 |
| 17 | 1+(−0.5+0.866i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−0.435−0.753i)T+(−9.5+16.4i)T2 |
| 23 | 1−5.98T+23T2 |
| 29 | 1+5.07T+29T2 |
| 31 | 1+5.32T+31T2 |
| 41 | 1+(−3.52−6.11i)T+(−20.5+35.5i)T2 |
| 43 | 1+1.39T+43T2 |
| 47 | 1+12.6T+47T2 |
| 53 | 1+(−0.00720+0.0124i)T+(−26.5−45.8i)T2 |
| 59 | 1+(3.09−5.36i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−5.81−10.0i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.958+1.66i)T+(−33.5+58.0i)T2 |
| 71 | 1+(0.310+0.537i)T+(−35.5+61.4i)T2 |
| 73 | 1+0.635T+73T2 |
| 79 | 1+(−7.73−13.3i)T+(−39.5+68.4i)T2 |
| 83 | 1+(0.691−1.19i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−5.52+9.57i)T+(−44.5−77.0i)T2 |
| 97 | 1−6.20T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.50953334611138617225628191114, −10.76419346751654475128739292949, −9.706747690678274311744775317117, −9.257894204505877404814869000134, −7.27886885070470357297091868810, −6.79710451068509928979611814057, −6.19891550978095729714910976260, −4.10744856201714768422115724763, −3.38980016001362032063332799294, −1.23472202783376885707929203908,
1.75431081024579326265901795392, 3.40752441033752864148978242771, 4.99252304306547224653324108930, 5.73031527758087461453608356073, 6.73681081015423066891297789610, 8.353898921049164849073860298278, 9.302762080926139891346578753743, 9.518178616625585198562516343494, 10.99250001149921161911308441503, 11.97114813899950486163318110013