L(s) = 1 | + (−0.261 − 0.453i)3-s + (1.19 + 2.07i)5-s + (−2.55 − 4.43i)7-s + (1.36 − 2.36i)9-s + 5.32·11-s + (1.22 + 2.12i)13-s + (0.626 − 1.08i)15-s + (0.5 − 0.866i)17-s + (0.435 + 0.753i)19-s + (−1.33 + 2.32i)21-s + 5.98·23-s + (−0.364 + 0.631i)25-s − 2.99·27-s − 5.07·29-s − 5.32·31-s + ⋯ |
L(s) = 1 | + (−0.151 − 0.261i)3-s + (0.535 + 0.927i)5-s + (−0.967 − 1.67i)7-s + (0.454 − 0.786i)9-s + 1.60·11-s + (0.340 + 0.589i)13-s + (0.161 − 0.280i)15-s + (0.121 − 0.210i)17-s + (0.0998 + 0.172i)19-s + (−0.292 + 0.506i)21-s + 1.24·23-s + (−0.0729 + 0.126i)25-s − 0.576·27-s − 0.942·29-s − 0.956·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.825 + 0.564i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.825 + 0.564i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.28393 - 0.397174i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.28393 - 0.397174i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + (-1.34 + 5.93i)T \) |
good | 3 | \( 1 + (0.261 + 0.453i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.19 - 2.07i)T + (-2.5 + 4.33i)T^{2} \) |
| 7 | \( 1 + (2.55 + 4.43i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 5.32T + 11T^{2} \) |
| 13 | \( 1 + (-1.22 - 2.12i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.5 + 0.866i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.435 - 0.753i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 5.98T + 23T^{2} \) |
| 29 | \( 1 + 5.07T + 29T^{2} \) |
| 31 | \( 1 + 5.32T + 31T^{2} \) |
| 41 | \( 1 + (-3.52 - 6.11i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 1.39T + 43T^{2} \) |
| 47 | \( 1 + 12.6T + 47T^{2} \) |
| 53 | \( 1 + (-0.00720 + 0.0124i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3.09 - 5.36i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-5.81 - 10.0i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (0.958 + 1.66i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (0.310 + 0.537i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 0.635T + 73T^{2} \) |
| 79 | \( 1 + (-7.73 - 13.3i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.691 - 1.19i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-5.52 + 9.57i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 6.20T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.50953334611138617225628191114, −10.76419346751654475128739292949, −9.706747690678274311744775317117, −9.257894204505877404814869000134, −7.27886885070470357297091868810, −6.79710451068509928979611814057, −6.19891550978095729714910976260, −4.10744856201714768422115724763, −3.38980016001362032063332799294, −1.23472202783376885707929203908,
1.75431081024579326265901795392, 3.40752441033752864148978242771, 4.99252304306547224653324108930, 5.73031527758087461453608356073, 6.73681081015423066891297789610, 8.353898921049164849073860298278, 9.302762080926139891346578753743, 9.518178616625585198562516343494, 10.99250001149921161911308441503, 11.97114813899950486163318110013