L(s) = 1 | + (−1.64 + 2.84i)3-s + (1.87 − 3.24i)5-s + (2.03 − 3.52i)7-s + (−3.90 − 6.77i)9-s + 1.66·11-s + (0.106 − 0.184i)13-s + (6.16 + 10.6i)15-s + (0.5 + 0.866i)17-s + (−0.271 + 0.470i)19-s + (6.69 + 11.6i)21-s − 4.61·23-s + (−4.51 − 7.82i)25-s + 15.8·27-s + 9.65·29-s − 1.66·31-s + ⋯ |
L(s) = 1 | + (−0.949 + 1.64i)3-s + (0.837 − 1.45i)5-s + (0.769 − 1.33i)7-s + (−1.30 − 2.25i)9-s + 0.503·11-s + (0.0295 − 0.0511i)13-s + (1.59 + 2.75i)15-s + (0.121 + 0.210i)17-s + (−0.0623 + 0.107i)19-s + (1.46 + 2.53i)21-s − 0.962·23-s + (−0.903 − 1.56i)25-s + 3.05·27-s + 1.79·29-s − 0.299·31-s + ⋯ |
Λ(s)=(=(296s/2ΓC(s)L(s)(0.983+0.180i)Λ(2−s)
Λ(s)=(=(296s/2ΓC(s+1/2)L(s)(0.983+0.180i)Λ(1−s)
Degree: |
2 |
Conductor: |
296
= 23⋅37
|
Sign: |
0.983+0.180i
|
Analytic conductor: |
2.36357 |
Root analytic conductor: |
1.53739 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ296(137,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 296, ( :1/2), 0.983+0.180i)
|
Particular Values
L(1) |
≈ |
1.12783−0.102556i |
L(21) |
≈ |
1.12783−0.102556i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 37 | 1+(3.22−5.16i)T |
good | 3 | 1+(1.64−2.84i)T+(−1.5−2.59i)T2 |
| 5 | 1+(−1.87+3.24i)T+(−2.5−4.33i)T2 |
| 7 | 1+(−2.03+3.52i)T+(−3.5−6.06i)T2 |
| 11 | 1−1.66T+11T2 |
| 13 | 1+(−0.106+0.184i)T+(−6.5−11.2i)T2 |
| 17 | 1+(−0.5−0.866i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.271−0.470i)T+(−9.5−16.4i)T2 |
| 23 | 1+4.61T+23T2 |
| 29 | 1−9.65T+29T2 |
| 31 | 1+1.66T+31T2 |
| 41 | 1+(−0.729+1.26i)T+(−20.5−35.5i)T2 |
| 43 | 1+2.74T+43T2 |
| 47 | 1−3.89T+47T2 |
| 53 | 1+(−3.86−6.69i)T+(−26.5+45.8i)T2 |
| 59 | 1+(0.563+0.975i)T+(−29.5+51.0i)T2 |
| 61 | 1+(−2.85+4.95i)T+(−30.5−52.8i)T2 |
| 67 | 1+(3.01−5.22i)T+(−33.5−58.0i)T2 |
| 71 | 1+(3.49−6.05i)T+(−35.5−61.4i)T2 |
| 73 | 1−2.12T+73T2 |
| 79 | 1+(−4.77+8.27i)T+(−39.5−68.4i)T2 |
| 83 | 1+(−6.22−10.7i)T+(−41.5+71.8i)T2 |
| 89 | 1+(−2.72−4.72i)T+(−44.5+77.0i)T2 |
| 97 | 1+9.99T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.64289454514780989646457738394, −10.49678039833792849071029193012, −10.09427594229794734148783728481, −9.149755926111647502089947942469, −8.260014821801901100047711982238, −6.43192580154188219920422378961, −5.37618915278325509139713074930, −4.61484649399043694940939121910, −3.95755328323474478032683657618, −1.05318044361227837540908464561,
1.81586884036436769379244365660, 2.61564540665442610574924775574, 5.27138942640193230849720354291, 6.09057665585627887402551162590, 6.66764270163695705337859852451, 7.66120306060997087290318564620, 8.728779693350674513703334046595, 10.23211096865867656689422687295, 11.15555816454752241091896798644, 11.83816448979489729749279639894