L(s) = 1 | + (−1.64 + 2.84i)3-s + (1.87 − 3.24i)5-s + (2.03 − 3.52i)7-s + (−3.90 − 6.77i)9-s + 1.66·11-s + (0.106 − 0.184i)13-s + (6.16 + 10.6i)15-s + (0.5 + 0.866i)17-s + (−0.271 + 0.470i)19-s + (6.69 + 11.6i)21-s − 4.61·23-s + (−4.51 − 7.82i)25-s + 15.8·27-s + 9.65·29-s − 1.66·31-s + ⋯ |
L(s) = 1 | + (−0.949 + 1.64i)3-s + (0.837 − 1.45i)5-s + (0.769 − 1.33i)7-s + (−1.30 − 2.25i)9-s + 0.503·11-s + (0.0295 − 0.0511i)13-s + (1.59 + 2.75i)15-s + (0.121 + 0.210i)17-s + (−0.0623 + 0.107i)19-s + (1.46 + 2.53i)21-s − 0.962·23-s + (−0.903 − 1.56i)25-s + 3.05·27-s + 1.79·29-s − 0.299·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.983 + 0.180i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.983 + 0.180i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.12783 - 0.102556i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.12783 - 0.102556i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 37 | \( 1 + (3.22 - 5.16i)T \) |
good | 3 | \( 1 + (1.64 - 2.84i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-1.87 + 3.24i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-2.03 + 3.52i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 - 1.66T + 11T^{2} \) |
| 13 | \( 1 + (-0.106 + 0.184i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.271 - 0.470i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 4.61T + 23T^{2} \) |
| 29 | \( 1 - 9.65T + 29T^{2} \) |
| 31 | \( 1 + 1.66T + 31T^{2} \) |
| 41 | \( 1 + (-0.729 + 1.26i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + 2.74T + 43T^{2} \) |
| 47 | \( 1 - 3.89T + 47T^{2} \) |
| 53 | \( 1 + (-3.86 - 6.69i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (0.563 + 0.975i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-2.85 + 4.95i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.01 - 5.22i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (3.49 - 6.05i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 2.12T + 73T^{2} \) |
| 79 | \( 1 + (-4.77 + 8.27i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-6.22 - 10.7i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-2.72 - 4.72i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 9.99T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.64289454514780989646457738394, −10.49678039833792849071029193012, −10.09427594229794734148783728481, −9.149755926111647502089947942469, −8.260014821801901100047711982238, −6.43192580154188219920422378961, −5.37618915278325509139713074930, −4.61484649399043694940939121910, −3.95755328323474478032683657618, −1.05318044361227837540908464561,
1.81586884036436769379244365660, 2.61564540665442610574924775574, 5.27138942640193230849720354291, 6.09057665585627887402551162590, 6.66764270163695705337859852451, 7.66120306060997087290318564620, 8.728779693350674513703334046595, 10.23211096865867656689422687295, 11.15555816454752241091896798644, 11.83816448979489729749279639894