L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999·6-s + (−1.36 + 0.366i)7-s − 0.999i·8-s − 0.999·10-s + (1 − i)11-s + (0.866 − 0.499i)12-s + (−0.866 − 0.5i)13-s + (−0.999 + i)14-s + (−0.499 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (−0.866 + 0.499i)20-s + (−1.36 − 0.366i)21-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.866 + 0.5i)3-s + (0.499 − 0.866i)4-s + (−0.866 − 0.5i)5-s + 0.999·6-s + (−1.36 + 0.366i)7-s − 0.999i·8-s − 0.999·10-s + (1 − i)11-s + (0.866 − 0.499i)12-s + (−0.866 − 0.5i)13-s + (−0.999 + i)14-s + (−0.499 − 0.866i)15-s + (−0.5 − 0.866i)16-s + (−0.866 + 0.499i)20-s + (−1.36 − 0.366i)21-s + ⋯ |
Λ(s)=(=(2960s/2ΓC(s)L(s)(−0.303+0.952i)Λ(1−s)
Λ(s)=(=(2960s/2ΓC(s)L(s)(−0.303+0.952i)Λ(1−s)
Degree: |
2 |
Conductor: |
2960
= 24⋅5⋅37
|
Sign: |
−0.303+0.952i
|
Analytic conductor: |
1.47723 |
Root analytic conductor: |
1.21541 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2960(2653,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2960, ( :0), −0.303+0.952i)
|
Particular Values
L(21) |
≈ |
1.858941924 |
L(21) |
≈ |
1.858941924 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 5 | 1+(0.866+0.5i)T |
| 37 | 1+(−0.866−0.5i)T |
good | 3 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 7 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
| 11 | 1+(−1+i)T−iT2 |
| 13 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 17 | 1+(0.866+0.5i)T2 |
| 19 | 1+(−0.866+0.5i)T2 |
| 23 | 1+(−1+i)T−iT2 |
| 29 | 1−iT2 |
| 31 | 1+T+T2 |
| 41 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 43 | 1+T+T2 |
| 47 | 1−iT2 |
| 53 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 59 | 1+(0.366−1.36i)T+(−0.866−0.5i)T2 |
| 61 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 67 | 1+(−0.5−0.866i)T2 |
| 71 | 1+(−1.73−i)T+(0.5+0.866i)T2 |
| 73 | 1−iT2 |
| 79 | 1+(0.5+0.866i)T2 |
| 83 | 1+(0.5−0.866i)T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.909548938459224123826373486926, −8.150784001851725724846763338634, −6.98588224065946504294983450466, −6.37223620684964732547095212043, −5.48408188285151495736270382229, −4.52389485981336885695173449877, −3.71675972076837110817201387967, −3.22625421081321184733950654863, −2.59031578627343758143073763606, −0.75817892646865677465865449856,
2.00249803956130361674357637052, 2.93241339511422814208722120099, 3.58760827757220044749053971400, 4.23612689281309335451332676922, 5.25229012724900773029402960015, 6.51510787029417149746854569528, 6.95546480873060149046200675098, 7.40031510319039315161524298805, 8.021162907752934314809722603729, 9.193654007379919206475678910586