L(s) = 1 | + (1.95 + 0.438i)2-s − 1.73·3-s + (3.61 + 1.71i)4-s + (−3.37 − 0.758i)6-s + 6.33·7-s + (6.30 + 4.92i)8-s + 2.99·9-s + 9.27i·11-s + (−6.26 − 2.96i)12-s − 18.5i·13-s + (12.3 + 2.77i)14-s + (10.1 + 12.3i)16-s + 13.9i·17-s + (5.85 + 1.31i)18-s + 17.2i·19-s + ⋯ |
L(s) = 1 | + (0.975 + 0.219i)2-s − 0.577·3-s + (0.904 + 0.427i)4-s + (−0.563 − 0.126i)6-s + 0.904·7-s + (0.788 + 0.615i)8-s + 0.333·9-s + 0.843i·11-s + (−0.521 − 0.246i)12-s − 1.42i·13-s + (0.882 + 0.198i)14-s + (0.634 + 0.772i)16-s + 0.818i·17-s + (0.325 + 0.0730i)18-s + 0.907i·19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.786 - 0.617i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 300 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.786 - 0.617i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.63373 + 0.910062i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.63373 + 0.910062i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.95 - 0.438i)T \) |
| 3 | \( 1 + 1.73T \) |
| 5 | \( 1 \) |
good | 7 | \( 1 - 6.33T + 49T^{2} \) |
| 11 | \( 1 - 9.27iT - 121T^{2} \) |
| 13 | \( 1 + 18.5iT - 169T^{2} \) |
| 17 | \( 1 - 13.9iT - 289T^{2} \) |
| 19 | \( 1 - 17.2iT - 361T^{2} \) |
| 23 | \( 1 - 33.7T + 529T^{2} \) |
| 29 | \( 1 - 28.6T + 841T^{2} \) |
| 31 | \( 1 - 23.4iT - 961T^{2} \) |
| 37 | \( 1 + 67.3iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 44.0T + 1.68e3T^{2} \) |
| 43 | \( 1 + 50.2T + 1.84e3T^{2} \) |
| 47 | \( 1 + 31.1T + 2.20e3T^{2} \) |
| 53 | \( 1 + 81.6iT - 2.80e3T^{2} \) |
| 59 | \( 1 + 19.2iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 53.1T + 3.72e3T^{2} \) |
| 67 | \( 1 + 4.49T + 4.48e3T^{2} \) |
| 71 | \( 1 - 13.3iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 40.8iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 141. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 69.8T + 6.88e3T^{2} \) |
| 89 | \( 1 - 46.3T + 7.92e3T^{2} \) |
| 97 | \( 1 - 68.5iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.81424935300202219767251448277, −10.80047999117731932072218376382, −10.22936520602631444839395531049, −8.411526378020761849535536958837, −7.58695790953343761706611549127, −6.54479197693088193508791705789, −5.37930942214753905501100949535, −4.76703401560459060506325161398, −3.38309263270107467409582382074, −1.67941239512989344135799976278,
1.31360433120439707739987049445, 2.93408774777415631668212880250, 4.53706482596483509232735908245, 5.07019388305197108220474101385, 6.40867465493973650529472281385, 7.12165230944355317295240815709, 8.538532161946739431996191005786, 9.781321200597589011044435181106, 11.08555370191022826237542541081, 11.39860091778740639839723305787