L(s) = 1 | + 4.18i·5-s + (2.62 + 0.358i)7-s − 1.73i·11-s + (−0.621 − 0.358i)13-s + (−5.74 − 3.31i)17-s + (−0.5 − 0.866i)19-s + 7.64i·23-s − 12.4·25-s + (3.62 + 6.27i)29-s + (2 + 3.46i)31-s + (−1.5 + 10.9i)35-s + (−2.62 − 4.54i)37-s + (−0.257 − 0.148i)41-s + (−2.74 + 1.58i)43-s + (−4.24 + 7.34i)47-s + ⋯ |
L(s) = 1 | + 1.87i·5-s + (0.990 + 0.135i)7-s − 0.522i·11-s + (−0.172 − 0.0994i)13-s + (−1.39 − 0.804i)17-s + (−0.114 − 0.198i)19-s + 1.59i·23-s − 2.49·25-s + (0.672 + 1.16i)29-s + (0.359 + 0.622i)31-s + (−0.253 + 1.85i)35-s + (−0.430 − 0.746i)37-s + (−0.0401 − 0.0232i)41-s + (−0.418 + 0.241i)43-s + (−0.618 + 1.07i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.936 - 0.350i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3024 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.936 - 0.350i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.235590487\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.235590487\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.62 - 0.358i)T \) |
good | 5 | \( 1 - 4.18iT - 5T^{2} \) |
| 11 | \( 1 + 1.73iT - 11T^{2} \) |
| 13 | \( 1 + (0.621 + 0.358i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (5.74 + 3.31i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 - 7.64iT - 23T^{2} \) |
| 29 | \( 1 + (-3.62 - 6.27i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-2 - 3.46i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.62 + 4.54i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.257 + 0.148i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (2.74 - 1.58i)T + (21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + (4.24 - 7.34i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (3.62 - 6.27i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (3 + 5.19i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-6 - 3.46i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.33iT - 71T^{2} \) |
| 73 | \( 1 + (7.5 + 4.33i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (10.2 + 5.91i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-2.74 - 4.75i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (11.2 - 6.48i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (2.74 - 1.58i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.026807741807784846730604141588, −8.227090444865671350473414704782, −7.32896815073119214660945112294, −6.97955750399475917887755200599, −6.13142492218406575536031215104, −5.27761375223668935758372884113, −4.35211659695732833136407483731, −3.25661582962966658840388089558, −2.67989482759708372929524221238, −1.64070874087439401346639489520,
0.36681513316924999334803260428, 1.57881282277603315090241755437, 2.27133087466865659976904143963, 4.11271409832530528430017412849, 4.50938653974577760742013822305, 5.03374087925913651418583434321, 6.01950424483915940551207770108, 6.87301580554985984793963510404, 8.042558710416670001024069486937, 8.399493345121246946368216530228